35 research outputs found
Recommended from our members
Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic
Changes in insulin resistance indicators, IGFs, and adipokines in a year-long trial of aerobic exercise in postmenopausal women
Physical activity is a known modifiable lifestyle means for reducing postmenopausal breast cancer risk, but the biologic mechanisms are not well understood. Metabolic factors may be involved. In this study, we aimed to determine the effects of exercise on insulin resistance (IR) indicators, IGF1, and adipokines in postmenopausal women. The Alberta Physical Activity and Breast Cancer Prevention Trial was a two-armed randomized controlled trial in postmenopausal, inactive, cancer-free women. A year-long aerobic exercise intervention of 225 min/week (n=160) was compared with a control group asked to maintain usual activity levels (n=160). Baseline, 6- and 12-month serum levels of insulin, glucose, IGF1, IGF-binding protein 3 (IGFBP3), adiponectin, and leptin were assayed, and after data collection, homeostasis model assessment of IR (HOMA-IR) scores were calculated. Intention-to-treat analyses were performed using linear mixed models. The treatment effect ratio (TER) of exercisers to controls was calculated. Data were available on 308 (96.3%) women at 6 months and 310 (96.9%) women at 12 months. Across the study period, statistically significant reductions in insulin (TER=0.87, 95% confidence interval (95% CI)=0.81–0.93), HOMA-IR (TER=0.86, 95% CI=0.80–0.93), and leptin (TER=0.82, 95% CI=0.78–0.87), and an increase in the adiponectin/leptin ratio (TER=1.21, 95% CI=1.13–1.28) were observed in the exercise group compared with the control group. No significant differences were observed for glucose, IGF1, IGFBP3, adiponectin or the IGF1/IGFBP3 ratio. Previously inactive postmenopausal women who engaged in a moderate-to-vigorous intensity exercise program experienced changes in insulin, HOMA-IR, leptin, and adiponectin/leptin that might decrease the risk for postmenopausal breast cancer
Adaptive evolution of the vertebrate skeletal muscle sodium channel
Tetrodotoxin (TTX) is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Nav). The skeletal muscle Nav (Nav1.4) channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Nav1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Nav1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Nav1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement
A Comparative Insight into Amprenavir Resistance of Mutations V32I, G48V, I50V, I54V, and I84V in HIV‑1 Protease Based on Thermodynamic Integration and MM-PBSA Methods
Drug resistance of mutations V32I,
G48V, I50V, I54V, and I84V in
HIV-1 protease (PR) was found in clinical treatment of HIV patients
with the drug amprenavir (APV). In order to elucidate the molecular
mechanism of drug resistance associated with these mutations, the
thermodynamic integration (TI) and molecular mechanics Poisson–Boltzmann
surface area (MM-PBSA) methods were applied to calculate binding free
energies of APV to wild-type PR and these mutated PRs. The relative
binding free energy differences from the TI calculations reveal that
the decrease in van der Waals interactions of APV with mutated PRs
relative to the wild-type PR mainly drives the drug resistance. This
result is in good agreement with the previous experimental results
and is also consistent with the results from MM-PBSA calculations.
Analyses based on molecular dynamics trajectories show that these
mutations can adjust the shape and conformation of the binding pocket,
which provides main contributions to the decrease in the van der Waals
interactions of APV with mutated PRs. The present study could provide
important guidance for the design of new potent inhibitors that could
alleviate drug resistance of PR due to mutations
Effects of exercise dose on endogenous estrogens in postmenopausal women: A randomized trial
Exercise dose comparison trials with biomarker outcomes can identify the amount of exercise required to reduce breast cancer risk and also strengthen the causal inference between physical activity and breast cancer. The Breast Cancer and Exercise Trial in Alberta (BETA) tested whether or not greater changes in estradiol (E2), estrone, and sex hormone-binding globulin (SHBG) concentrations can be achieved in postmenopausal women randomized to 12 months of HIGH (300 min/week) vs MODERATE (150 min/week) volumes of aerobic exercise. BETA included 400 inactive postmenopausal women aged 50-74 years with BMI of 22-40 kg/m2. Blood was drawn at baseline and 6 and 12 months. Adiposity, physical fitness, diet, and total physical activity were assessed at baseline and 12 months. Intention-to-treat analyses were performed using linear mixed models. At full prescription, women exercised more in the HIGH vs MODERATE group (median min/week (quartiles 1,3): 253 (157 289) vs 137 (111 150); P smaller than 0.0001). Twelve-month changes in estrogens and SHBG were smaller than 10% on average for both groups. No group differences were found for E2, estrone, SHBG or free E2 changes (treatment effect ratios (95% CI) from linear mixed models: 1.00 (0.96–1.06), 1.02 (0.98–1.05), 0.99 (0.96–1.02), 1.01 (0.95, 1.06), respectively, representing the HIGH:MODERATE ratio of geometric mean biomarker levels over 12 months; n=382). In per-protocol analyses, borderline significantly greater decreases in total and free E2 occurred in the HIGH group. Overall, no dose effect was observed for women randomized to 300 vs 150 min/week of moderate to vigorous intensity exercise who actually performed a median of 253 vs 137 min/week. For total and free E2, the lack of differential effect may be due to modest adherence in the higher dose group