
Generic, network schema agnostic sparse  
tensor factorization for singlepass 
clustering of heterogeneous information 
networks 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CCBY) 

Open access 

Wu, J., Meng, Q., Deng, S., Huang, H., Wu, Y. and Badii, A. 
(2017) Generic, network schema agnostic sparse tensor 
factorization for singlepass clustering of heterogeneous 
information networks. PLoS ONE, 12 (2). e0172323. ISSN 
19326203 doi: https://doi.org/10.1371/journal.pone.0172323 
Available at http://centaur.reading.ac.uk/69359/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work. 

To link to this article DOI: http://dx.doi.org/10.1371/journal.pone.0172323 

Publisher: Public Library of Science 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://www.reading.ac.uk/centaur


RESEARCH ARTICLE

Generic, network schema agnostic sparse

tensor factorization for single-pass clustering

of heterogeneous information networks

Jibing Wu1*, Qinggang Meng2, Su Deng1, Hongbin Huang1, Yahui Wu1, Atta Badii3

1 Science and Technology on Information System Engineering Laboratory, National University of Defense

Technology, ChangSha, Hunan, China, 2 Department of Computer Science, Loughborough University,

Loughborough, United Kingdom, 3 Department of Computer Science, University of Reading, Whiteknights,

United Kingdom

* wujibing@nudt.edu.cn

Abstract

Heterogeneous information networks (e.g. bibliographic networks and social media net-

works) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is

an effective method to understand the semantic information and interpretable structure of

the heterogeneous information networks, and it has attracted the attention of many

researchers in recent years. However, most studies assume that heterogeneous informa-

tion networks usually follow some simple schemas, such as bi-typed networks or star net-

work schema, and they can only cluster one type of object in the network each time. In this

paper, a novel clustering framework is proposed based on sparse tensor factorization for

heterogeneous information networks, which can cluster multiple types of objects simulta-

neously in a single pass without any network schema information. The types of objects and

the relations between them in the heterogeneous information networks are modeled as a

sparse tensor. The clustering issue is modeled as an optimization problem, which is similar

to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algo-

rithm and a feasible initialization method are proposed to solve the optimization problem.

Based on the tensor factorization, we simultaneously partition different types of objects into

different clusters. The experimental results on both synthetic and real-world datasets have

demonstrated that our proposed clustering framework, STFClus, can model heterogeneous

information networks efficiently and can outperform state-of-the-art clustering algorithms as

a generally applicable single-pass clustering method for heterogeneous network which is

network schema agnostic.

Introduction

Information networks are widely used to describe realistic applications in the cyber domain.

Vertices in information networks map the objects in real-world applications, and edges map

the relations between them. While the mining of information networks has been studied for
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many years, most current studies have focused on homogeneous information networks [1],

consisting of only one type of vertex and one type of edge between vertices. For example, the

well-known PageRank algorithm [2] models the Internet as a homogeneous information net-

work. Each webpage is mapped to a vertex and each hyperlink between webpages is mapped to

an edge.

However, in real-world applications, information networks are often heterogeneous, where

objects and the relations between them are of more than one type. We call this kind of infor-

mation network a heterogeneous information network [3]. For example, the bibliographic

network extracted from the DBLP database (http://dblp.uni-trier.de/db/) is a typical heteroge-

neous information network, which is shown in Fig 1A. The DBLP database is an open resource

that contains most of the bibliographic information on computer science. The network con-

tains four types of objects: author (A), paper (P), venue (i.e., conference or journal) (V), and

term (T). The concept of mining heterogeneous information network was first proposed by Y.

Sun and J. Han [1].

Clustering is an effective method for understanding the semantic information and inter-

pretable structure of a network. Clustering can also support relation prediction in information

networks. Unfortunately, clustering heterogeneous information networks is more difficult

than doing so for homogeneous information networks. We cannot directly measure the simi-

larity among the different types of objects and relations. In recent years, researchers have

made significant progress in clustering heterogeneous information networks, which largely

focuses on the following three main directions.

The first is to use a ranking based clustering algorithm [1], this developed the RankClus

algorithm that integrated clustering with ranking for clustering bi-typed networks, where only

two different types of objects exist in the network. Its extension, the NetClus [3] algorithm,

was developed for the star network schema, where the edges only appear between target

objects and attribute objects. Fig 1A shows a typical star network schema, where the paper (P)

is the target object and others are attribute objects. RankClus and NetClus have shown that

ranking and clustering can mutually enhance each other. The recent work FctClus [4] achieved

a higher computational speed and had a greater clustering accuracy when applied to heteroge-

neous information networks. However as with NetClus, the FctClus algorithm can only handle

the star network schema. The network schema is a meta template of a heterogeneous

Fig 1. Examples of network schemas for two different heterogeneous information networks. (A):

DBLP network with a star network schema. (B): Douban Movie network with a general network schema.

doi:10.1371/journal.pone.0172323.g001
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information network, which shows how many types of objects and links in the network. The

definition of network schema can be found in [5].

The second direction involves meta-path based clustering algorithms. A meta-path [5] is a

connected path defined on the network schema of a heterogeneous information network,

which represents a composite semantic relation between two objects. PathSim [5] (Meta-path

based top-k similarity search) measured the similarity between the same types of objects based

on meta-path in heterogeneous information networks. However, it has a limitation in that the

meta-path must be symmetric, i.e., PathSim couldn’t work on different types of objects. The

PathSelClus algorithm [6–8] integrated meta-path selection with user-guidance to cluster

objects in networks, where user provided seeds for each cluster acted as guidance.

VEPathCluster [9] (Vertex/Edge-centric meta-Path Clustering) combined meta-path vertex-

centric clustering with meta-path edge-centric clustering.

In addition, for some specific applications, researchers have integrated the topological

structure of networks with graph clustering methods. A multivariate weighted complex net-

work method [10] was applied in order to characterise the patterns in gas-liquid two-phase

flow. A visibility graph model [11, 12] was designed for clustering multi-scale networks, and

achieved a satisfactory clustering result when applied to detecting epileptic seizures from the

EEG dataset and typical patterns form an oil-water two-phase flow dataset. For clustering het-

erogeneous information networks with incomplete attributes, a probabilistic clustering

method [13] and a structural-based similarity measurement, namely NetSim [14], were

developed.

Most existing methods have achieved good clustering results for the heterogeneous infor-

mation networks with a specified simple network schema, but are ineffective in dealing with

heterogeneous information networks with a general network schema or lacking network

schema information. For example, in Fig 1B, Douban Movie network (a well-known movie

recommender system in China http://movie.douban.com/) follows a general network schema,

which contains six different types of objects: user, group, movie, actor, director and type, and

the different relations between them. For such a heterogeneous information network with a

general network schema, RankClus and NetClus are ineffective. In addition, the meta-path is

difficult to choose for users. Another limitation of most existing methods is that they can only

cluster one type of object at a time in the network. In other words, we must repeatedly apply

the existing method to obtain the clustering results for different types of objects.

Recently, the theory of tensor factorization provided a new perspective of clustering analy-

sis. A tensor is the general expression of a matrix, in which the elements are addressed by

more than two indices. Tensor factorization based clustering has been used in computer

graphics [15] and computer vision applications [16–21]. By bridging tensor factorization and

clustering, we can obtain a fascinating methodology for mining heterogeneous information

networks.

However, many heterogeneous information networks are very sparse, where most elements

in the tensor are zeros. For example, in the DBLP database (Aug. 2015 version), there are

3,067,295 papers and 1,603,605 authors, but only 8,128,282 author-paper relations. That is to

say, there are only 0.00017% nonzero elements in the huge sparse adjacent matrix of author

and paper.

Another challenge is the curse of dimensionality [22]. It has been proven [23] that the dis-

tances or similarities between pairs of elements in the high dimensional tensor are almost the

same for the vast majority of data distributions and distance functions. Therefore, most exist-

ing clustering methods cannot be used in the sparse and high dimensional heterogeneous

information networks directly.

Tensor factorization, single-pass clustering, heterogeneous information networks and network schema agnostic
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To solve the problem of clustering heterogeneous information networks with general net-

work schemas or even without network schema information, e.g., Douban Movie network in

Fig 1(b), and clustering all types of objects simultaneously in a single pass, we propose a sparse

tensor factorization based method, which is called STFClus (Sparse Tensor Factorization

based Clustering). We model a heterogeneous information network as a multi-way array, i.e.,

tensor. Each object type maps onto one mode of the tensor, and the relations between different

types of objects map onto the elements in tensor. The main contributions made by our paper

are as follows:

1. We propose a novel clustering framework based on sparse tensor factorization, namely

STFClus, which can cluster heterogeneous information networks with general network

schemas or even without network schema information. Another advantage is that STFClus

can cluster all types of objects simultaneously in a single pass.

2. The clustering issue based on tensor factorization is modeled as an optimization problem,

which is similar to the well-known Tucker decomposition [24, 25]. We propose an Alter-

nating Least Squares (ALS) [26] algorithm to solve the clustering problem.

3. In STFClus, only nonzero tensor elements together with corresponding tensor indices are

handled, and a non-distance function for similarity measurement between pairs of objects

is needed.

4. We discuss the bottleneck of implementation for STFClus, and propose a performance

improvement method that avoids the need to calculate large scale intermediate results. We

also propose a feasible initialization method to start STFClus.

5. STFClus is tested on both synthetic and real-world networks. Experimental results show

that STFClus outperforms the state-of-the-art baselines in terms of key performance indica-

tors such as accuracy and efficiency.

Methods

Preliminaries

First, we introduce some related concepts and tensor notation that will be used in this paper.

More details about tensor algebra can be found in [27–29].

A tensor is a multi-dimensional array. The order of a tensor is the number of dimensions,

also known as ways or modes. We will follow the convention used in [27] to denote scalars by

lowercase letters, e.g., a, b, c, vectors (one mode) by boldface lowercase letters, e.g., a, b, c,

matrices (two modes) by boldface capital letters, e.g., A, B, C, and tensors (three modes or

more) by boldface calligraphic letters, e.g., X ;Y;Z. The ar: denotes the rth row of matrix A,

and a:r denotes the rth column of matrix A. Elements of a matrix or a tensor are denoted by

lowercase letters with subscripts, i.e., the (i1, i2, � � �, iN)th element of an Nth order tensor X is

denoted by xi1, i2, � � �, iN.

Some common definitions for tensors are set out below, as used in [28].

Definition 1 (Matricization) [28]. Matricization transforms an N-order tensor into a matrix

by arranging the elements in a particular order.

For example, the matricization of a tensor X 2 RI1�I2�����IN along the nth mode is denoted as

X ðnÞ 2 R
In�ðI1�����In� 1�Inþ1�����IN Þ. A special case of matricization is vectorization, which trans-

forms a tensor into a vector, i.e., all modes of the tensor become row modes. The vectorization

of a tensor X 2 RI1�I2�����IN is denoted by ~X � X ð;Þ 2 R
QN

n¼1
In .

Tensor factorization, single-pass clustering, heterogeneous information networks and network schema agnostic
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Definition 2 (Hadamard product) [28]. The Hadamard product for two tensors with the

same dimensions is also known as the element-wise product. For X ;Y 2 RI1�I2�����IN , their

Hadamard product is denoted by X � Y 2 RI1�I2�����IN , and its elements are given by

ðX � YÞi1 i2 ���iN ¼ xi1 i2 ���iN yi1 i2 ���iN .

Definition 3 (Kronecker product) [28]. The Kronecker product for two matrices A 2 RI�J

and B 2 RK�L is denoted by A
 B, which is a matrix of size (IJ) × (KL) and defined by

A
 B ¼

a11B a12B � � � a1JB

a21B a22B � � � a2JB

..

. ..
. . .

. ..
.

aI1B aI2B � � � aIJB

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

Definition 4 (Inner product) [28]. The inner product for two tensors with the same dimen-

sion, X ;Y 2 RI1�I2�����IN , is denoted by hX ;Yi. The result of the inner product is the sum of all

elements in their Hadamard product, and defined as

hX ;Yi ¼
XI1

i1¼1

XI2

i2¼1

� � �
XIN

iN¼1

ðX � YÞi1 i2 ���iN

Definition 5 (Frobenius norm) [28]. The Frobenius norm for a tensor X 2 RI1�I2�����IN is

defined as k X kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX ;Xi

p
.

Definition 6 (Mode-n matrix product) [28]. The Mode-n matrix product of a tensor X 2
RI1�I2�����IN with a matrix U 2 RJ�In is denoted by X�nU and is of size I1 × � � � × In−1 × J ×

In+1 × � � � × IN. Its elements are given by ðX�nUÞi1 ���in� 1 jinþ1 ���iN
¼
PIn

in¼1

xi1 i2���iN ujin .

The Mode-n matrix product of a tensor X 2 RI1�I2�����IN with a matrix U 2 RJ�In is equiva-

lent to first matricization of X along the nth mode, followed by the matrix multiplication of

X ðnÞ with U, before finally folding the result back as a tensor.

Given an Nth order tensor X 2 RI1�I2�����IN , the Tucker decomposition [24] of X yields a

core tensor G of specified size J1 × J2 × � � � × Jn, Jn� In and factor matrices

UðnÞ 2 RIn�Jn ; n ¼ 1; 2; � � � ;N, such that

G�1U
ð1Þ�2U

ð2Þ�3 � � � �NU
ðNÞ � ½½G;Uð1Þ;Uð2Þ; � � � ;UðNÞ��

The Tucker decomposition approximates a tensor as a series of Mode-n matrix products of

a smaller core tensor with a factor matrix along each mode. In traditional Tucker decomposi-

tion, the factor matrices fUðnÞgNn¼1
are assumed to be orthogonal.

We now give the definition for an information network, which is based on work by Y. Sun

and J. Han [3, 5].

Definition 7 (Information network) [3]. An information network is a weighted graph

defined on a set of objects belonging to T types, denoted by V ¼ fVtg
T
t¼1

, a set of binary rela-

tions on V, denoted by E, and a weight mapping function, denoted by W : E! Rþ. The infor-

mation network is denoted by G ¼ ðV;E;WÞ. Specially, when T� 2, the information network

is called as heterogeneous information network, otherwise, it is called as homogeneous

information network.

Tensor factorization, single-pass clustering, heterogeneous information networks and network schema agnostic
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We denote each object of type Vt as futng
Nt
n¼1

, where Nt is the number of objects in type Vt ,

i.e., Nt ¼ jVtj and t = 1, 2, � � �, T. The total number of objects in the network is given by

N ¼
PT

t¼1
Nt . For an arbitrary edge eðta ;tbÞi;j ¼ hu

ta
i ; u

tb
j i 2 E; ta 6¼ tb, the simplest weight mapping

function W : E! Rþ can be defined as follows:

o
ðta ;tbÞ
i;j ¼W eðta ;tbÞi;j

� �
¼ 1 ð1Þ

In particular, we need to give some restrictions for heterogeneous information networks in

our work. Firstly, each edge eðta ;tbÞi;j ¼ hu
ta
i ; u

tb
j i 2 E only appears on different types of objects,

i.e., ta 6¼ tb. Secondly, we assume that the heterogeneous information network G ¼ ðV;E;WÞ
is undirected, i.e., eðta ;tbÞi;j ¼ eðtb;taÞj;i . It is noteworthy that many edges in real-world applications

appear on objects of the same type. An example is the friendship relation type between users in

a Douban Movie network, as shown in Fig 1(b). In this case, we can take a copy of this type of

object, and let the edge appear only between the two types of objects. In the Douban Movie

network, we can take a copy of users and denote it as user_copy. Then, we can let the friend-

ship relations appear only between user and user_copy. The revised network schema of the

Douban Movie network is shown in Fig 2. In the following sections, the heterogeneous infor-

mation network G ¼ ðV;E;WÞ will comply with these restrictions, unless there are special

instructions.

Fig 2. The revised network schema of a Douban Movie network. We take a copy of users, denoted as

user_copy, and let the friendship relations appear only between user and user_copy.

doi:10.1371/journal.pone.0172323.g002
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Sparse tensor factorization based clustering

Tensor construction and sparse representation. The relationships in heterogeneous

information networks show a semantic link in real-world applications, which is defined as

follows:

Definition 8 (Relationship in Heterogeneous Information Network). Given a heterogeneous

information network G ¼ ðV;E;WÞ, a relationship R is a connected sub-graph of G, denoted

by R ¼ ðV0;E0;W 0Þ, where V0 ¼ fu1
n1
; u2

n2
; � � � ; uTnTg, 0� nt� Nt, t = 1, 2, � � �, T, E0 � E is a

binary relation on V0, and W0 = W.

For example, a semantic relation in a real-world bibliographic network (in Fig 1A, contain-

ing four types of objects {A, P, V, T}), “an Author uAi writes a Paper uPj published in the Venue

uVm, and containing the Term uTn ”, can be represented by a relationship R ¼ ðfuAi ; u
P
j ; u

V
m; u

T
ng;

fhuAi ; u
P
j i; hu

P
j ; u

V
mi; hu

P
j ; u

T
n ig;WÞ. we can use the subscript of each object in R to mark the corre-

sponding relationship. In this example, the relationship can be marked by Ri, j, m, n.

Let X be a Tth order tensor of size N1 × N2 × � � � × NT, each mode of X representing one

type of object in the network G. An arbitrary element, xn1 n2� � �nT� 0, for nt = 1, 2, � � �, Nt, is the

weight of the corresponding relationship Rn1, n2, � � �, nT that exists, i.e.,

xn1 n2 ���nT
¼

⊠
ei;j2E0

oi;j if 9Rn1 ;n2 ;���;nT
;

0 otherwise:
ð2Þ

8
<

:

where ⊠ is an operation on the weights of all edges in Rn1, n2, � � �, nT. In the simplest example,

⊠ can be defined as ⊠
ei;j2E

0
oi;j ¼ 1. The heterogeneous information network G ¼ ðV;E;WÞ can

then be represented in tensor form as X . The method of determining whether the relationship

Rn1, n2, � � �, nT actually exists is related to graph theory and will not be discussed here. Fig 3 gives

an example of tensor construction.

Fig 3. An example of tensor construction from a given heterogeneous information network. On the left

is the original network with three types of objects (yellow circle, blue square and red triangle), and on the right

cube is the constructed 3-order tensor. The number within each object is the object identifier. Each element

(black dot in the right cube) in the tensor represents a relationship in the network (black dashed circle in the

left).

doi:10.1371/journal.pone.0172323.g003
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To deal with the sparse tensor X , we use the coordinate format as proposed in [30]. Assum-

ing there are J non-zero elements in X , then a vector z 2 RJ and a matrix M 2 RJ�T can repre-

sent the value and the corresponding coordinates of each non-zero element in X respectively.

Here the jth non-zero value is given by zj and its subscript is given by the jth row of M, i.e., mj:.

Let xn1 n2� � �nT be the jth non-zero element in X , we have mj: = [mj1, mj2, � � �, mjT] = [n1, n2, � � �,

nT] and zj = xn1 n2� � �nT. In other words, mjt = nt represents the fact that the tth coordinate of the

jth non-zero element in X is nt, and that the value of the jth non-zero element in X is zj. This

sparse representation of tensors is the same as the format implemented in the MATLAB Ten-

sor Toolbox [31].

Problem formulation. Given a heterogeneous information network G ¼ ðV; E;WÞ, the

tensor representation X is usually large and sparse. We can use the sparse representation for

X , i.e., the J non-zero weight elements vector z 2 RJ and the corresponding coordinates

matrix M 2 RJ�T . Each row of M can be treated as a relationship in the network, and the corre-

sponding element in z is the weight of the relationship.

So all the rows of the coordinates matrix M ¼ ½m>
1:
;m>

2:
; � � � ;m>

J: �
>

, mj: = [mj1, mj2, � � �,

mjT], for j = 1, 2, � � �, J, represent the input relationships in the network, which we want to parti-

tion into K sub-tensors (clusters) fC1; C2; � � � ; CKg. The vector z = [z1, z2, � � �, zJ] is the weight

vector for the input relationships. The centre of the cluster Ck is denoted by ck = [ck1
, ck2

, � � �,

ckT], for k = 1, 2, � � �, K. Let yi 2 {1, 2, � � �, K} be the associated unknown cluster label. For exam-

ple yj = k represents mj: belonging to the kth cluster, and yjt = k0 represents the subscript mjt of

mj: (that is the jtth object of type V t in G) belonging to the k0th cluster.

Generally speaking, a relationship (or a sub-graph) in the heterogeneous information net-

work may belong to several clusters. Meanwhile, the objects in the relationship may also

belong to more than one cluster. We assume that there is already a way to measure the prob-

ability that the objects or relationships belong to a specific cluster. Let’s denote pjt, k = P(yjt =

k|mjt) as the probability that the tth component of the point mj: belongs to the kth cluster,

and pj, k = P(yj = k|mj:) as the probability that the point mj: belongs to the kth cluster.

A basic clustering approach minimizes the sum of differences between individual relation-

ships in each cluster and the corresponding cluster centres. So the heterogeneous information

network clustering problem can be formalized by the vectorized version as follows:

min
pj;k

XJ

j¼1

zjmj: � zj
XK

k¼1

pj;kck













2

F

¼ min
pj;k

XJ

j¼1

z2

j mj: �
XK

k¼1

pj;kck













2

F

s:t:
8j;
XK

k¼1

pj;k ¼ 1

8j;8k; pj;k 2 ½0; 1�

8
>>><

>>>:

ð3Þ

In Eq (3), z2
j > 0 and mj: �

XK

k¼1

pj;kck













2

F

� 0, so

min
pj;k

XJ

j¼1

z2

j mj: �
XK

k¼1

pj;kck













2

F

¼
XJ

j¼1

min
pj;k

z2
j mj: �

XK

k¼1

pj;kck













2

F

 !

. Since z2
j > 0, the optimal

solution p�j;k of min
pj;k

z2
j mj: �

XK

k¼1

pj;kck













2

F

 !

is also the optimal solution for

min
pj;k

mj: �
PK

k¼1

pj;kck











2

F

 !

. In other words,
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arg min
pj;k

z2
j mj: �

XK

k¼1

pj;kck













2

F

 !

¼ arg min
pj;k

mj: �
XK

k¼1

pj;kck













2

F

 !

. So we can ignore z2
j in Eq

(3). Also we can re-write Eq (3) by a new perspective of sparse form as follows:

min
pjt ;k

XJ

j¼1

XT

t¼1

mjt
�
XK

k¼1

pjt ;kckt













2

F

s:t:
8t; 8j;

XK

k¼1

pjt ;k ¼ 1

8t; 8j;8k; pjt ;k 2 ½0; 1�

8
>>><

>>>:

ð4Þ

Actually, Eq (3) aims to cluster relationships in heterogeneous information networks, and

Eq (4) partitions different types of objects into K clusters.

Now we form T matrices, denoted by UðtÞ 2 RNt�K , for t = 1, 2, � � �, T. The element

uðtÞi;k 2 UðtÞ, for i = 1, 2, � � �, Nt; t = 1, 2, � � �, T; k = 1, 2, � � �, K, can be defined as uðtÞi;k ¼ pjt ;k, if

i = jt; otherwise, uðtÞi;k ¼ 0. Then, uðtÞi;k represents the probability that the ith object in type V t , i.e.,

uti , belongs to the kth cluster. So the matrix UðtÞ 2 RNt�K is the projection matrix for the corre-

sponding mode of X . Then a new small size tensor G 2 RK � K � � � � � K
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

T

is used as the

mixture coefficient among different modes and clusters.

Let G be the core tensor and U(t), t = 1, 2, � � �, T be the factor matrices, we can use

½½G;Uð1Þ;Uð2Þ; � � � ;UðTÞ�� to approximate X , i.e., X � ½½G;Uð1Þ;Uð2Þ; � � � ;UðTÞ��. Then, we can for-

malize the clustering problem in a way that is similar to the Tucker decomposition in [32].

min
G;Uð1Þ;Uð2Þ ;���;UðTÞ

X � 〚G; Uð1Þ;Uð2Þ; � � � ;UðTÞ〛




2

F

s:t:

8t;
XK

k¼1

uðtÞik ¼ 1

8t; 8i; 8k; uðtÞik 2 ½0; 1�

8t; rankðUðtÞÞ ¼ K

8
>>>>>>>><

>>>>>>>>:

ð5Þ

In Eq (5), i = 1, 2, � � �, Nt;t = 1, 2, � � �, T;k = 1, 2, � � �, K, and K< min{N1, N2, � � �, NT} is the

total number of clusters. The first constraint in Eq (5) guarantees that the sum of probabilities

for each object belonging to all clusters is 1. The second constraint in Eq (5) stipulates that

each probability should be in the range [0, 1]. The last constraint in Eq (5) ensures that each

factor matrix is of full column rank, i.e., for any mode, there is no empty cluster and any two

clusters are not the same.

In fact, Eq (5) can achieve the results of Eqs (3) and (4) simultaneously. That is, Eq (5) clus-

ters different types of objects and relationships in a heterogeneous information network simul-

taneously. The factor matrices U(1),U(2), � � �,U(T) are the cluster indication matrices for the T
types of objects respectively and the probability of relationship Rn1, n2, � � �, nT belonging to the

kth cluster is given by gk;k;���;ku
ð1Þ

n1 ;k
uð2Þn2 ;k
� � � uðTÞnT ;k

, where gk;k;���;k 2 G and uðtÞnt ;k 2 UðtÞ.
Algorithm for STFClus. The Alternating Least Squares (ALS) method is a common

approach for solving the Tucker decomposition problem. It updates one factor matrix itera-

tively at each round, while keeping the other factor matrices unchanged. The proposed
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algorithm for STFClus is also an ALS method that consists of two stages: the factor matrices

updating and the core tensor updating. After the core tensor and all factor matrices are initial-

ized, all variables in Eq (5) are fixed in the factor matrices updating stage, except for the mode-

t factor matrix U(t). Then an approach similar to NMF is applied to search for the optimal U(t)

that minimizes the objective function. In the core tensor updating stage, using the optimal fac-

tor matrices obtained by the factor matrices updating stage, the core tensor is updated. Finally,

the factor matrices updating and core tensor updating stages are iteratively implemented until

the approximation error in the objective function is unchanged. The details of the tensor alge-

bra and properties used in the algorithm can be found in [29].

In the factor matrices updating stage, each mode-t factor matrix U(t) is obtained, while the

core tensor and other factor matrices are fixed. The objective function in Eq (5) can be rewrit-

ten by matricization of X along the tth mode as follows:

min
UðtÞ
k X ðtÞ � UðtÞ½½G;Uð1Þ; � � � ;Uðt� 1Þ;Uðtþ1Þ; � � � ;UðTÞ��

ðtÞ k
2

F ð6Þ

where X ðtÞ 2 R
Nt�ðN1�����Nt� 1�Ntþ1�����NT Þ.

If we assume that the optimal solution U(t) satisfies all the constraints in Eq (5), then Eq (6)

can be written as the following linear equation:

X ðtÞ ¼ UðtÞ〚G; Uð1Þ; � � � ;Uðt� 1Þ;Uðtþ1Þ; � � � ;UðTÞ〛ðtÞ

¼ UðtÞGðtÞðU
ðTÞ 
 � � � 
Uðtþ1Þ 
Uðt� 1Þ 
 � � � 
Uð1ÞÞ

>
ð7Þ

We denote S as the tensor ½½G;Uð1Þ; � � � ;Uðt� 1Þ;Uðtþ1Þ; � � � ;UðTÞ��. Then,

S 2 RN1�����Nt� 1�K�Ntþ1�����NT , and the matricization of S along the tth mode is

SðtÞ ¼ GðtÞ U
ðTÞ 
 � � � 
 Uðtþ1Þ 
 Uðt� 1Þ 
 � � � 
 Uð1Þ

� �>
ð8Þ

where SðtÞ 2 R
K�ðN1�����Nt� 1�Ntþ1�����NT Þ. Now Eq (7) is similar to the NMF problem in [33, 34],

i.e.,

X ðtÞ ¼ UðtÞSðtÞ ð9Þ

Thus, we can use the NMF update rule in [34] to update U(t) as follows:

UðtÞ  UðtÞ �
X ðtÞS

>

ðtÞ

UðtÞSðtÞS
>

ðtÞ

ð10Þ

where the symbol
ð�Þ

ð�Þ
denotes the element-wise division of two matrices with the same size.

Note that the factor matrices derived by Eq (10) do not satisfy the first and second constraints

in Eq (5). To satisfy these two constraints, we can normalize each row of the factor matrices.

uðtÞi;k  
uðtÞi;k

PK
k¼1

uðtÞi;k
ð11Þ

In the core tensor updating stage, we keep all the factor matrices unchanged and rewrite the

objective function in Eq (5) by vectorization of X as follows:

min
G

X �〚G; Uð1Þ;Uð2Þ; � � � ;UðTÞ〛




2

F¼ min
~G

~X � ðUðTÞ 
 � � � 
Uð1ÞÞ~G








2

F
ð12Þ
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We assume that all the factor matrices satisfy the constraints in Eq (5). Then the core tensor

G in Eq (12) can be obtained by solving the following linear equation:

~X ¼ UðTÞ 
 � � � 
 Uð1Þ
� �

~G ð13Þ

We set:

Q ¼ UðTÞ 
 � � � 
 Uð1Þ ð14Þ

where Q 2 Rð
QT

t¼1
NtÞ�KT . Then, we can transform Eq (13) to a NMF model, i.e.,

~X ¼ Q~G ð15Þ

Thus, the NMF update rule in [34] can be used to update~G as follows:

~G  ~G �
Q>~X
Q>Q~G

ð16Þ

where

Q
>~X ¼ XðQ>

Þ
>

�����!

¼ XððUðTÞÞ
>

 � � � 
 ðUð1ÞÞ

>
Þ
>

��������������������!

¼ 〚X ; ðUð1ÞÞ
>
; � � � ; ðUðTÞÞ

>〛
�������������������!

ð17Þ

and

Q
>
Q~G ¼ ðUðTÞ 
 � � � 
Uð1ÞÞ

>
ðUðTÞ 
 � � � 
Uð1ÞÞ~G

¼ ððUðTÞÞ
>
UðTÞ 
 � � � 
 ðUð1ÞÞ

>
Uð1ÞÞ~G

¼ 〚G; ðUð1ÞÞ
>
Uð1Þ; � � � ; ðUðTÞÞ

>
UðTÞ〛

�������������������������!

ð18Þ

The properties of Kronecker products and vectorization operators can be found in [35].

Then, Eq (16) is equal to:

~G  ~G �
〚X ; ðUð1ÞÞ

>
; � � � ; ðUðTÞÞ

>〛
�������������������!

〚G; ðUð1ÞÞ
>
Uð1Þ; � � � ; ðUðTÞÞ

>
UðTÞ〛

�������������������������!

¼ G �
〚X ; ðUð1ÞÞ

>
; � � � ; ðUðTÞÞ

>〛
〚G; ðUð1ÞÞ

>
Uð1Þ; � � � ; ðUðTÞÞ

>
UðTÞ〛

����������������������������!
ð19Þ

According to Eq (19), we can get the update rule of the core tensor G as follows:

G  G �
½½X ; Uð1Þ

� �>
; � � � ; UðTÞ

� �>
��

½½G; Uð1Þ
� �>Uð1Þ; � � � ; UðTÞ

� �>UðTÞ��
ð20Þ

Feasibility and convergence analysis. First, we discuss the feasibility of STFClus.

Theorem 1: The STFClus optimization problem is equivalent to the optimization problem

in Eq (4).

Before giving the proof of Theorem 1, we first review the clustering problem as defined in

Eq (4). Eq (4) is a sparse form, which partitions each object into different clusters. The pjt, k is
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the cluster indicator, which gives the probability of an object belonging to the corresponding

cluster. In the matrix form, clustering tth type of objects can be formalized as:

min
P
k M � PC k2

F

where P is the cluster indication matrix for the tth type of objects, and C is the cluster centres.

Proof. Since Eq (6) is transformed from Eq (5) for updating U(t), Eq (5) can be rewritten as:

min
UðtÞ
k X ðtÞ � UðtÞSðtÞ k

2

F

where U(t) is the cluster indication matrix for the tth type of objects, and SðtÞ is the cluster

centres.

X ðtÞ is the matricization of X along the tth mode, and M is the sparse representation of X ,

and let P = U(t), C ¼ SðtÞ, so Eq (5) will have the same form as Eq (4).

Then, we give the convergence analysis of STFClus. Since Lee and Seung have proven the

convergence of NMF in [34], we cite theorem 1 in [34] as Theorem 2 in this paper.

Theorem 2 [34]: The function k X ðtÞ � UðtÞSðtÞ k2
F is non-increasing under the update rule

UðtÞ  UðtÞ �
X ðtÞS

>
ðtÞ

UðtÞSðtÞS
>
ðtÞ

. And the function k X ðtÞ � UðtÞSðtÞ k2
F is invariant if and only if U(t) is at a

local minima.

Proof. See the details in [34].

By extending Theorem 2 to high-dimensional space, we prove that STFClus is stable.

Lemma 1: The objective function X � 〚G; Uð1Þ;Uð2Þ; � � � ;UðTÞ〛




2

F in Eq (5) is non-

increasing under the update rules UðtÞ  UðtÞ �
X ðtÞS

>
ðtÞ

UðtÞSðtÞS
>
ðtÞ

. And the function

X � 〚G; Uð1Þ;Uð2Þ; � � � ;UðTÞ〛




2

F is invariant if and only if U(t) is at a local minima.

Proof. We denote UðtÞiterþ1 and UðtÞiter as the solutions of the adjacent two iterations respectively,

i.e., UðtÞiterþ1 ¼ UðtÞiter �
X ðtÞS

>
ðtÞ

UðtÞiterSðtÞS
>
ðtÞ

. According to Theorem 2, we have

k X ðtÞ � UðtÞiterþ1SðtÞ k
2

F
� k X ðtÞ � UðtÞiterSðtÞ k

2

F
;

where the equality holds if and only if UðtÞiterþ1 ¼ UðtÞiter and UðtÞiter is at a local minima. By substitut-

ing Eq (8) into this inequation, we obtain:

X ðtÞ � UðtÞ
iterþ1

GðtÞðU
ðTÞ 
 � � � 
Uðtþ1Þ 
Uðt� 1Þ 
 � � � 
Uð1ÞÞ

>








2

F

� X ðtÞ � UðtÞ
iterGðtÞðU

ðTÞ 
 � � � 
Uðtþ1Þ 
Uðt� 1Þ 
 � � � 
Uð1ÞÞ
>









2

F

Then, fold the result back as a tensor:

X � 〚G; Uð1Þ; � � � ;UðtÞ
iterþ1

; � � � ;UðTÞ〛




2

F � X � 〚G; Uð1Þ; � � � ;UðtÞ
iter; � � � ;U

ðTÞ〛




2

F
;

where the equality holds if and only if UðtÞiterþ1 ¼ UðtÞiter and UðtÞiter is at a local minima.

By reversing the roles of U(t) and G, the update rule of the core tensor in Eq (20) can be sim-

ilarly proven.
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Implementation issues

Performance improvement. The bottleneck of the STFClus lies in the calculation of SðtÞ.
According to Eq (8), we need to compute the Kronecker products of T − 1 dense factor matri-

ces. The intermediate results of the Kronecker products are dense and may be of very large

size. The largest intermediate results of the Kronecker products would have

maxtðKT� 1
Q

i2f1;2;���;Tg
i6¼t

NiÞ elements, i.e., the time and space complexities are high.

In fact, the Kronecker products need not be calculated here. According to Eq (8), we can

rewrite the X ðtÞS
>

ðtÞ and SðtÞS
>

ðtÞ in Eq (10) as the following form.

X ðtÞS
>

ðtÞ

¼ X ðtÞ GðtÞ U
ðTÞ 
 � � � 
 Uðtþ1Þ 
 Uðt� 1Þ 
 � � � 
 Uð1Þ

� �>
� �>

¼ X ðtÞ UðTÞ
� �>


 � � � 
 Uðtþ1Þ
� �>


 Uðt� 1Þ
� �>


 � � � 
 Uð1Þ
� �>

� �>
GðtÞ
� �>

¼ ½½X ; Uð1Þ
� �>

; � � � ; Uðt� 1Þ
� �>

; Uðtþ1Þ
� �>

; � � � ; UðTÞ
� �>

��
ðtÞ GðtÞ
� �>

ð21Þ

SðtÞS
>

ðtÞ

¼ GðtÞ U
ðTÞ 
 � � � 
 Uðtþ1ÞUðt� 1Þ 
 � � � 
 Uð1Þ

� �> UðTÞ
� �>


 � � � 
 Uðtþ1Þ
� �>


 Uðt� 1Þ
� �>


 � � � 
 Uð1Þ
� �>

� �>
GðtÞ
� �>

¼ GðtÞ UðTÞ
� �>UðTÞ 
 � � � 
 Uðtþ1Þ

� �>Uðtþ1Þ 
 Uðt� 1Þ
� �>Uðt� 1Þ 
 � � � 
 Uð1Þ

� �>Uð1Þ
� �

GðtÞ
� �>

¼ ½½G; Uð1Þ
� �>Uð1Þ; � � � ; Uðt� 1Þ

� �>Uðt� 1Þ; Uðtþ1Þ
� �>Uðtþ1Þ; � � � ; UðTÞ

� �>UðTÞ��
ðtÞ GðtÞ
� �>

ð22Þ

In this way, by Eqs (21) and (22), we can directly compute Eq (10) and update U(t) without

calculating SðtÞ. In other words, we don’t need to compute the Kronecker products round by

round. Algorithm 1 gives the pseudo-code of STFClus.

Algorithm 1: STFClus (Sparse Tensor Factorization based Clustering for Heterogeneous

Information Networks).

1. InputrelationshiptensorX, numberof clustersK, initialguessfor
fUðtÞg

T
t¼1

and G, and convergencethreshold �.
2. repeat
3. for t 1 to T:
4. UpdateU(t) accordingto Eqs (10),(21) and (22);
5. NormalizeU(t) accordingto Eq (11);
6. end for
7. UpdateG accordingto Eq (20);

8. until X � 〚G; Uð1Þ;Uð2Þ; � � � ;UðTÞ〛




2

F
� �.

9. Output fUðtÞg
T
t¼1

and G.

Initialization. In the STFClus algorithm, the initial guess of the core tensor and factor

matrices have a large impact on the final result. The best method for the core tensor and factor

matrices initialization may vary between given real-world datasets. In general, each mode of

the input tensor has its own physical meaning, and each element of the input tensor represents

a relationship among different modes of the tensor. The STFClus algorithm aims to cluster all
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modes of the input tensor simultaneously by utilizing these relationships. Each factor matrix is

the cluster indication matrix for a mode of the input tensor, and the core tensor is the mixture

coefficient among different factor matrices.

As with the cluster indication matrices, the factor matrices should meet the constraints

stated in Eq (5). It is clear that a factor matrix satisfying all the constraints is not unique, and

the strategies for initialization are diversified. Of course, we can use random initialization, as it

is simple and rapid. However, random initialization may lead to an increase in the number of

iterations or even result in an unacceptably slow convergence speed.

Therefore, We propose a feasible method for initialization of the factor matrices that is sim-

ilar to the traditional K-means method, called the STFClus_initial. We first cluster each mode

of the input tensor independently as the corresponding mode factor matrix initialization; sub-

sequently, the core tensor can be determined uniquely using the factor matrices.

Since STFClus_initial works in a similar way for different modes of input tensors, we will

simply describe the process for a single mode. Without loss of generality, we detail the use of

STFClus_initial on the tth mode of the input tensor. It is known that the tth mode of the

tensor represents the tth type of objects in the heterogeneous information network. STFClus_i-

nitial on the tth mode of the input tensor can then be formalized as: given the tensor X of the

heterogeneous information network, we want to partition the tth mode of X into K clusters.

The key aspect of STFClus_initial is how it measures the similarity between different

objects. We note that, in the sparse representation of the input tensor M ¼ ½m>
1:
;m>

2:
; � � � ;

J:>
m
�
>

, each row mj: = [mj1, mj2, � � �, mjT], for j = 1, 2, � � �, J, corresponds to a nonzero element in

the tensor, which indicates the relationship between the corresponding objects. The tth com-

ponent of each row corresponds to the object from tth type.

According to M, we can define the similarity of two different tth type of objects (such as uta
and utb) as follows:

sim uta; u
t
b

� �
¼

sam mj:jmjt
¼ a

n o
; mj:jmjt

¼ b
n o

; t
� �

T � 1ð Þmax mj:jmjt
¼ a

n o�
�
�

�
�
�; mj:jmjt

¼ b
n o�
�
�

�
�
�

� � ð23Þ

where the |•| denotes the cardinality of a set, and the function sam(•) denotes the total number

of the same components in corresponding columns (except the tth column) of two matrices.

For two matrices A 2 Rr1�l and B 2 Rr2�l with the same number of columns, and a natural

number t� l, the function sam(•) can be defined as:

samðA;B; tÞ ¼
Xl

i¼1
i6¼t

jfar;ijar;i 2 A; r ¼ 1; 2; � � � ; r1g \ fbr;ijbr;i 2 B; r ¼ 1; 2; � � � ; r2gj

According to Eq (23) we can see that the similarity function holds three properties:

1. 0 � simðuta; u
t
bÞ � 1

2. simðuta; u
t
aÞ ¼ 1

3. simðuta; u
t
bÞ ¼ simðutb; u

t
aÞ; a 6¼ b

We denote the K clusters as fOt
1
;Ot

2
; � � � ;Ot

Kg. We can also define the similarity between an

object and a cluster as the weighted sum of the similarity between the object and each object in
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the cluster, namely,

sim uti ;O
t
k

� �
¼
X

utj2O
t
k

uðtÞjk sim uti ; u
t
j

� �

ð24Þ

Thus the probability of an object belonging to the corresponding cluster can be calculated

as:

uðtÞik ¼
sim uti ;O

t
k

� �

PK
k0 ¼1

sim uti ;Ot
k0

� � ð25Þ

Furthermore, STFClus_initial on the tth mode of input tensor can be summarized as

follows:

• Step1: Choose K objects from tth type as the initial clusters fOt1;O
t
2; � � � ;O

t
Kg randomly.

Here, we require that the similarity between any two of the K objects should not be equal to

one.

• Step2: Calculate simðuti;OtkÞ, for i = 1, 2, � � �, Nt and k = 1, 2, � � �, K according to Eqs (23) and

(24).

• Step3: Calculate uðtÞik , for i = 1, 2, � � �, Nt and k = 1, 2, � � �, K according to Eq (25).

• Step4: Repeat Step2 and Step3 until U(t) unchanged or the iteration number is larger than a

predefined number iterNum.

In practice, the algorithm will converge in less than 3 iterations in most cases. Since the U(t)

is only the initial guess for STFClus, and it will be updated in STFClus, we can set iterNum = 2.

After obtaining the initialization of U(t), for t = 1, 2, � � �, T, the core tensor G is determined

uniquely by the factor matrices. According to the objective function in Eq (5), we can get the

core tensor as follows:

G ¼ ½½X ; Uð1Þ
� �y

; Uð2Þ
� �y

; � � � ; UðTÞ
� �y

�� ð26Þ

where the superscript ‘†’ specifies the Moore-Penrose pseudo-inverse. The last constraint in

Eq (5) makes sure that U(t) is full column rank, i.e., the columns of U(t) are linearly indepen-

dent. So the Moore-Penrose pseudo-inverse can be calculated as:

UðtÞ
� �y

¼ UðtÞ
� �>UðtÞ
� �� 1

UðtÞ
� �>

ð27Þ

The pseudo-code of STFClus_initial is given in Algorithm 2.

Algorithm 2: STFClus_initial (An initial algorithm for STFClus).

1. InputrelationshiptensorX, numberof clustersK.
2. for t 1 to T:
3. do
4. ChooseK objectsas initialclusters fOt

1
;Ot

2
; � � � ;Ot

Kg randomly;
5. whileany simðu 2 Ot

k1
; u
0

2 Ot
k2
Þ ¼¼ 1

6. repeat
7. for i 1 to Nt:
8. for k 1 to K:
9. Calculate simðuti ;O

t
kÞ accordingto Eqs (23) and (24)

10. end for
11. CalculateuðtÞik accordingto Eq (25)
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12. end for
13. until U(t) unchangedor iterNum> 2
14. end for
15. CalculateG accordingto Eqs (26) and (27);

16. Outputthe initialguessfor fUðtÞg
T
t¼1

and G.

Time complexity analysis. The time complexity for the proposed method comprises of

two parts: STFClus_initial and STFClus. First, in STFClus_initial, we need to calculate the ini-

tial guess for factor matrices and core tensor. For the factor matrices initialization, we need to

compute the similarity between each non-zero element in the tensor, i.e., the relationships in

the heterogeneous information network, with each relationship containing T objects. So the

time complexity for factor matrices initialization is O(TJ2), where J is the number of non-zero

elements in the tensor. For the core tensor initialization, according to Eqs (26) and (27), we

need to compute the Moore-Penrose pseudo-inverse of each factor matrix, and mode-n matrix

product of tensor X with all factor matrices. The time complexity for computing the Moore-

Penrose pseudo-inverse of all factor matrices is O(2K2 N + TK3), where N ¼
PT

t¼1
Nt is the

total number of objects in the network. So the time complexity for the core tensor initialization

is O(TKJ + 2K2 N + TK3). Therefore, the total time complexity for STFClus_initial is O(TJ2 +

TKJ + 2K2 N + TK3).

Second, in STFClus, we need to update the factor matrices and core tensor at each round.

According to Eqs (21) and (22), computing X ðtÞS
>

ðtÞ costs O((T − 1)KJ + KT Nt), and computing

UðtÞSðtÞS
>

ðtÞ costs O(K2 N + TKT+1). So, the time complexity for updating all the factor matrices

at each round is O((T2 − T)KJ + (KT + TK2 + 3K)N + T2 KT+1). According to Eq (20), the time

complexity for updating core tensor is O(TKJ + K2 N + TKT+1 + 2KT). Then, the total time

complexity for STFClus is O(T2 KJ + (KT + (T + 1)K2 + 3K)N + (T2 + T)KT+1 + 2KT).

For heterogeneous information networks, T is the number of object types, K is the number

of clusters, J is the number of relationships and N is the total number of objects. We have T�
J, T� N, and K� J, K� N. In order to show this more clearly, the time complexity for

STFClus_initial can be summarized as O(a1J2 + a2J + a3N + a4), and the time complexity for

STFClus can be summarized as O(b1J + b2N + b3), where a1, a2, a3, a4, b1, b2, and b3 are all con-

stants. Thus, we can see that the time complexity for STFClus_initial is proportional to the

number of objects and to the square of the number of relationships in the network, while the

time complexity for STFClus is almost a linear function of the number of objects and relation-

ships in the network.

Experiments and results

In this section, we present several experiments on synthetic and real-world datasets for hetero-

geneous information networks, and compare the performance of our method, STFClus, with a

number of state-of-the-art clustering methods.

All experiments are implemented in the MATLAB R2015a (version 8.5.0) 64-bit. The syn-

thetic datasets are generated by the codes of synthetic datasets generation algorithm, which

are shown in the S1 File. The real-world datasets are all publicly available online. The Matlab

codes for STFClus_initial algorithm and STFClus algorithm are shown in the S2 File and

the S3 File respectively. All the source codes are available online at https://github.com/

tianshuilideyu/STFClus. The MATLAB Tensor Toolbox (version 2.6, http://www.sandia.gov/

*tgkolda/TensorToolbox/) is used in our experiments. All experimental results are average

values obtained by running the algorithms ten times on corresponding datasets, thus provid-

ing significant insight into the performance of different parameters and different algorithms.
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Dataset description

The synthetic datasets. The purpose of using synthetic datasets is to be able to verify the

level of the performance that STFClus can deliver given that the detailed cluster structures of

the synthetic datasets are known and so it is possible to evaluate the performance quantitatively

based on the STFClus with different parameters.

The synthetic datasets are generated with the following parameters:

• T: the number of object types in the heterogeneous information network. It is also the num-

ber of modes in the tensor.

• K: the number of clusters.

• S: the tensor scale, and S = N1 × N2 × � � � × NT.

• D: the density of the tensor, i.e., the percentage of nonzero elements in the tensor. And

D ¼ J
S, where J is the number of nonzero elements.

• O: Whether the clusters are overlapping, denoted by a 1(yes) or 0 (no).

In order to make the synthetic datasets similar to a realistic situation, we assume the distri-

bution for different types of objects that appear in a relationship to follow Zipf’s law (see details

https://en.wikipedia.org/wiki/Zipf%27s_law). Zipf’s law is defined by ftðr; rt;NtÞ ¼
r� rtPNt
n¼1

n� rt
,

where Nt is the number of the tth type of objects, r is the object index, and ρt is the parameter

characterizing the distribution. Zipf’s law denotes the frequency of the rth object of tth type

appearing in the relationship. Then, with the parameters above, we can construct different syn-

thetic datasets for different experiments.

Experiment A on synthetic datasets: in order to evaluate the performance quantitatively

with different D and S, we fix T = 4, K = 2, and O = 1, and we set the parameter ρ1 = 0.95, ρ2 =

1.01, ρ3 = 0.99, and ρ4 = 1.05. We then construct four different scaled datasets, with S = 2.5K,

S = 250K, S = 2.5M and S = 25M, respectively. For each network, we set different densities as

D = 0.5%, D = 1%, D = 5% and D = 10% respectively. See details in Table 1.

Experiment B on synthetic datasets: In order to evaluate the performance quantitatively

with different T and O, we fix K = 2, D = 0.5% and S = 5M, and we set the parameter ρ1 = 0.95,

ρ2 = 1.01, ρ3 = 0.99, ρ4 = 1.05, ρ5 = 0.9, ρ6 = 1.1, ρ7 = 0.95 and ρ8 = 1.05. We then construct four

datasets with the same scale, in which T = 2, T = 4, T = 6 and T = 8 respectively, and for each T,

we set O = 1 and O = 0 respectively. See details in Table 2.

The real-world datasets. In order to test the performance of STFClus in real-world sce-

narios, one medium-scale real-world dataset and two large-scale real-world datasets are used,

and the details are summarized in Table 3.

The first real-world dataset is extracted from the DBLP database, called DBLP-four-areas

dataset, which contains the ground truth of cluster labels for some objects. It is a four

research areas subset of DBLP used in [3–6, 8, 13, 36], and it can be downloaded from:

Table 1. The synthetic datasets for Experiment A.

N1 × N2 × � � � × NT D

Syn_a1 10 × 5 × 5 × 10 = 2.5K 0.5%, 1%, 5%, 10%

Syn_a2 50 × 10 × 10 × 50 = 250K 0.5%, 1%, 5%, 10%

Syn_a3 50 × 10 × 50 × 100 = 2.5M 0.5%, 1%, 5%, 10%

Syn_a4 100 × 50 × 50 × 100 = 25M 0.5%, 1%, 5%, 10%

doi:10.1371/journal.pone.0172323.t001
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http://web.cs.ucla.edu/*yzsun/data/DBLP_four_area.zip. The four research areas in the

DBLP-four-areas dataset are database (DB), data mining (DM), machine learning (ML), and

information retrieval (IR), respectively. There are five representative conferences in each area.

All the related authors, the papers published in these conferences and the terms contained in

the papers’ titles are included. The DBLP-four-areas dataset contains 14,376 papers with 100

labelled, 14,475 authors with 4,057 labelled, 20 labelled conferences and 8,920 terms. Here,

there are no labelled records in terms, since terms are difficult to label even manually. In

DBLP, many terms are included in multiple research areas, for example, ‘system’ is a high-

frequency term in both DB and IR, and it also often appears in DM and ML. The frequencies

of ‘system’ appearing in DB, DM, ML and IR are 31.65%, 23.10%, 10.41% and 34.83%, respec-

tively. The density of the DBLP-four-areas dataset is 9.01935 × 10−9, so we can construct a

medium-scale 4-mode tensor with size 14,376 × 14,475 × 20 × 8,920 and 334,832 non-zero ele-

ments. Each non-zero element in the 4-mode tensor represents a relationship or a sub-network

in the DBLP, i.e., one author wrote a paper published on a conference and that contained a

specific term. We compare the performance of STFClus with several other state-of-the-art

methods on the labelled records in this dataset.

The second real world dataset is the DBLP database(downloaded form http://dblp.uni-trier.

de/xml/ in August 2015), called DBLP-full-areas dataset, which contains all the research areas

in computer science. It includes four types of objects: Author, Paper, Venue (conferences or

journals) and Term, which are organized in a star network schema, as shown in Fig 1A. In the

DBLP database, papers may come from journals, conferences, books, web pages and so on. We

Table 3. The details of real-world datasets.

Types of objects Number of objects Number of relationships Density

DBLP-four-areas Author 14,475 334,832 9.01935 × 10−9

Paper 14,376

Conference 20

Term 8,920

DBLP-full-areas Author 952,214 35,204,622 1.00896 × 10−13

Paper 1,237,709

Venue 1,534

Term 192,995

Douban Movie Network Movie 12,677 441,008,031 1.20416 × 10−16

Actor 6,311

Director 2,449

Type 38

User 13,367

Group 2,753

User_copy 13,367

doi:10.1371/journal.pone.0172323.t003

Table 2. The synthetic datasets for Experiment B.

T N1 × N2 × � � � × NT O

Syn_b1 2 5K × 1K 1, 0

Syn_b2 4 50 × 10 × 100 × 100 1, 0

Syn_b3 6 50 × 10 × 10 × 10 × 10 × 10 1, 0

Syn_b4 8 5 × 4 × 5 × 5 × 10 × 10 × 10 × 10 1, 0

doi:10.1371/journal.pone.0172323.t002
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choose journal and conference papers in our experiment, because most journal and conference

papers comprise the latest research results. Even so, the DBLP-full-areas dataset is still a large-

scale dataset, containing 952,214 authors, 1,237,709 papers, 1,534 venues and 192,995 terms.

The density of DBLP-full-areas dataset is 1.00896 × 10−13, so we construct a large-scale 4-mode

tensor with size 952,214 × 1,237,709 × 1,534 × 192,995 and 35,204,622 non-zero elements.

Compared with the DBLP-four-areas dataset, we can see that the increased number of multiple

modes leads to an explosion of relationships (non-zero elements) in the generated tensor,

although it is still very sparse.

For an additional case study, we use the Douban Movie Network, which is collected by

Chuan Shi [37], and can be downloaded from https://github.com/zzqsmall/SemRec/tree/

master/data. The Douban Movie Network follows a general network schema, as shown in Fig

1B, and includes 12,677 movies, 6,311 actors, 2,449 directors, 38 movie types, 13,367 users and

2,753 user groups. In addition to the attribute information of users and movies, the Douban

Movie Network also includes social relations among users and recommendation actions

between users and movies. The records of users, movies, directors and actors in this dataset

are anonymous. In order to meet the restrictions of a heterogeneous information network in

our work, we take a copy of users and denote it as user_copy, and organize the seven types of

objects as the network schema shown in Fig 2. The density of the Douban Movie Network is

1.20416 × 10−16, so we construct a very large-scale7-mode tensor with size 12,677 × 6,311

× 2,449 × 38 × 13,367 × 2,753 × 13,367, and 441,008,031 non-zero elements. Each non-zero ele-

ment in this 7-mode tensor represents a user with social relation information recommended a

movie with the attribute information.

Evaluation metrics

In order to compare the clustering results with other state-of-the-art clustering methods for

heterogeneous information networks, we adopt the Normalized Mutual Information (NMI)

[38] and Accuracy (AC) as our performance measurements.

NMI is used to measure the mutual dependence information between the clustering result

and the ground truth. Given N objects, K clusters, one clustering result, and the ground truth

classes for the objects, let n(i, j), i, j = 1, 2, � � �, K be the number of objects that labelled i in clus-

tering result while in the jth class of ground truth. The joint distribution can be defined as

pði; jÞ ¼ nði;jÞ
N , the marginal distribution of rows can be calculated as p1ðjÞ ¼

PK
i¼1

pði; jÞ, and

the marginal distribution of column can be calculated as p2ðiÞ ¼
PK

j¼1
pði; jÞ. Then, the NMI is

defined as:

NMI ¼

PK
i¼1

PK
j¼1

pði; jÞlog
pði; jÞ

p1ðjÞp2ðiÞ

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1

p1ðjÞlogp1ðjÞ
PK

i¼1
p2ðiÞlogp2ðiÞ

q

The NMI ranges from 0 to 1, the larger value of NMI, the better the clustering result is.

AC is used to compute the clustering accuracy that measures the percent of the correct clus-

tering result. AC is defined as:

AC ¼
PT

t¼1

PNt
n¼1

d mapðutnÞ; labelðu
t
nÞ

� �

PT
t¼1

Nt

where mapðutnÞ is the cluster label of the object utn; the labelðutnÞ is the ground truth class of the
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object utn. The δ(�) is an indicator function:

dð�Þ ¼
1 if mapðutnÞ ¼ labelðutnÞ

0 if mapðutnÞ 6¼ labelðutnÞ

(

Since both of NMI and AC are used to measure the performance of clustering one type of

object, the weighted average NMI and AC is also used to measure the performance of STFClus

and other state-of-the-art methods:

NMI ¼
PT

t¼1
NtðNMIÞt
PT

t¼1
Nt

AC ¼
PT

t¼1
NtðACÞt

PT
t¼1

Nt

Experimental results

STFClus on synthetic datasets. Experiment A: In order to evaluate the performance

quantitatively with different densities D and network scales S, STFClus is tested on the datasets

in Table 1. Since there are four different densities for each scale network, the 16 synthetic data-

sets are grouped into 4 different scales networks. The experimental results are shown in Figs 4

and 5.

Fig 4 shows the iteration number and running time of STFClus on the synthetic datasets in

Table 1. It should be noted that, since the running time of STFClus_initial algorithm on

Syn_a4 with D = 5% and D = 10% is unacceptable, we use the random initialization method to

initialize factor matrices on Syn_a4 with D = 5% and D = 10%. We also find that the STFClus

doesn’t converge sporadically starting with the random initialization. In fact, non-convergence

occurs two or three times out of ten. In addition, the iteration number and running time of

STFClus are increased with increased network scale and density.

Fig 5 shows the AC and NMI of STFClus on the synthetic datasets in Table 1. We can find

that with increased density, both AC and NMI are increased and become close to 1. This

means that with the increase in network density, useful relationships in the network become

richer and richer, and the clustering results become more and more close to the real world.

Fig 4. The iteration number and running time with different D and S.

doi:10.1371/journal.pone.0172323.g004
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When D = 0.5%, both AC and NMI on four synthetic datasets are low, since too few useful

relationships exist in the network. Generally, larger network scales and density result in greater

iteration numbers and running times, but offer higher accuracy and quality of clustering

results.

To conclude, the use of synthetic networks in experiment A demonstrates that STFClus can

work well on large-scale and sparse heterogeneous information networks.

Experiment B: In order to evaluate the performance quantitatively with different object

types T and various overlapping O states, we apply the STFClus method for the datasets in

Table 2. In fact, there are 8 synthetic datasets grouped into 4 differently scaled networks, since

each synthetic dataset has both overlapping and non-overlapping clusters. The experimental

results are shown in Figs 6 and 7.

Fig 6 shows the iteration number and running time of STFClus on the synthetic datasets in

Table 2. It can be found that with an increasing number of object types at the same network

scale, the iteration number and running time are increased. When the clusters are non-

overlapping, usually the iteration number is less than that when the clusters are overlapping.

In Fig 6, both the iteration number and running time increase abruptly when T = 8. There are

two possible reasons for this. First, the more object types T in the network, the more

Fig 6. The iteration number and running time with different T and O.

doi:10.1371/journal.pone.0172323.g006

Fig 5. The AC and NMI values with different D and S.

doi:10.1371/journal.pone.0172323.g005

Tensor factorization, single-pass clustering, heterogeneous information networks and network schema agnostic

PLOS ONE | DOI:10.1371/journal.pone.0172323 February 28, 2017 21 / 28



dimensions possessed by the tensor. This means that the number of factor matrices and the

scale of core tensor would become larger when the object types T in the network is increased.

The second reason is that when the network scale and density are fixed, the number of objects

in each type, i.e., Nt, is decreased while the object types T is increased. This phenomenon can

be found in Table 2. When T = 8, Nt becomes less than ten. The network scale and density

being fixed means that the non-zero elements in the tensor are unchanged. In other words, the

number of relationships in the network remains unchanged while the network scale and den-

sity are fixed. With an increase in object types T, each relationship becomes more complex,

i.e., each relationship contains more objects, and the frequency of each object appearing in the

relationships is increased.

Fig 7 presents the AC and NMI results of the STFClus on synthetic datasets in Table 2. Both

the AC and NMI are increased and equal to 1 with increasing number of object types. This

means that when the network scale and density are fixed, the accuracy of the clustering results

improves with increasing number of object types T in the network. We can also see that the

clustering results of non-overlapping clusters are better when T = 2 and T = 4. However, the

advantage disappears when T = 6 and T = 8. That is to say, when the number of object types T
is small, the clustering results of STFClus on non-overlapping clusters are improved. However,

when the number of object types T becomes sufficiently large, the clustering results of STFClus

on both overlapping and non-overlapping networks are satisfactory. Because there are more

object types in the network, more useful information about each object is shown through

relationships.

Overall experiment B shows that STFClus can work better on networks with more object

types. When the number of object types is sufficiently large, STFClus can handle networks

with overlapping or non-overlapping clusters equally well.

STFClus on DBLP-four-areas dataset. In this section, the clustering performance of

STFClus on the DBLP-four-areas dataset is compared with a number of state-of-the-art clus-

tering methods as follows:

1. NetClus [3]: This is an extended version of RankClus [1], which can deal with networks fol-

lowing the star network schema.

2. PathSelClus [6, 8]: This is a clustering method based on the pre-defined symmetric meta-

path, requiring user guidance. In PathSelClus, the distance between the same type object is

measured by PathSim [5], and the method starts with seeds as given by the user.

Fig 7. The AC and NMI with different T and O.

doi:10.1371/journal.pone.0172323.g007
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3. FctClus [4]: This is a recently proposed clustering method for heterogeneous information

networks. As with NetClus, the FctClus method can deal with networks following the star

network schema.

As the baseline methods can only deal with heterogeneous information networks of a spe-

cific schema, here we must construct different sub-networks for them. For NetClus and

FctClus, we use all four modes, but they are organized as a star network schema [3, 4], where

the paper (P) is the centre type, and author (A), conference (C) and term (T) are the attribute

types. For PathSelClus, we also use the four modes: author (A), paper (P), conference (C) and

term (T). However, we select the symmetric meta-path of P-T-P, A-P-C-P-A and C-P-T-P-C

to cluster the papers, authors and conferences respectively, and in PathSelClus, we give each

cluster one seed to start.

Since the STFClus doesn’t need any information of network schema, we model the DBLP-

four-areas dataset as a 4-mode tensor, and each mode represents one object type. The 4 modes

are author (A), paper (P), conference (C) and term (T), respectively. The actual sequence of

the object types is insignificant. Each element of the tensor represents a relationship among

the four types of objects and we use the sparse representation of tensor. The AC, NMI and run-

ning time on DBLP-four-areas dataset of STFClus and the three baseline methods are summa-

rized in Tables 4–6. From the experimental results on DBLP-four-areas dataset, we can see

that STFClus performs the best on AC and NMI, while PathSelClus gives the best running

time.

Though STFClus gives the longest running time in experiment, STFClus can obtain the

clusters of all types of objects simultaneously, while the other baselines can only cluster one

type of objects each time. This is why only the total time is shown for STFClus in Table 6.

Table 4. AC of experiments on DBLP-four-areas dataset.

AC STFClus NetClus PathSelClus FctClus

Paper 0.7699 0.7154 0.7551 0.7887

Author 0.8254 0.7177 0.7951 0.8008

Conference 0.9998 0.9172 0.9950 0.9031

AC 0.8250 0.7186 0.7951 0.8010

doi:10.1371/journal.pone.0172323.t004

Table 5. NMI of experiments on DBLP-four-areas dataset.

NMI STFClus NetClus PathSelClus FctClus

Paper 0.7044 0.5402 0.6142 0.7152

Author 0.8549 0.5488 0.6770 0.6012

Conference 0.9994 0.8858 0.9906 0.8248

NMI 0.8520 0.5503 0.6770 0.6050

doi:10.1371/journal.pone.0172323.t005

Table 6. Running time of experiments on DBLP-four-areas dataset.

Running time (s) STFClus NetClus PathSelClus FctClus

Paper — 802.6 542.3 808.4

Author — 743.7 681.1 774.9

Conference — 658.4 629.3 669.8

Total time 2840.9 2204.7 1852.7 2253.1

doi:10.1371/journal.pone.0172323.t006
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NetClus performs worse in the AC and NMI, just achieving 71.86% on AC and 55.03% on

NMI. However, an important advantage of NetClus is that the objects ranking in each cluster

can be obtained while clustering the objects. PathSelClus performs better than NetClus on AC

and NMI. And it has an advantage too, i.e., based on the PathSim [5], PathSelClus can rapidly

measure the similarity between any two objects of the same type using the predefined symmet-

ric meta-path. PathSelClus also delivers the best result for running time. However, the results

of PathSelClus strongly depend on the choice of meta-path and seeds as given by users.

Case studies on DBLP-full-areas dataset and Douban Movie Network. Since there is no

ground truth for cluster labels of the DBLP-full-areas dataset and the Douban Movie Network,

we cannot adopt AC and NMI to measure the performance of STFClus. In Table 3, we can see

that the tensors constructed from both the DBLP-full-areas dataset and the Douban Movie

Network are large-scale but low density. If we don’t use the sparse representation, the scale of

the entire tensors may reach exabyte, or even zetabyte levels. Such large scale tensors are cur-

rently unrealistic for memory access and retrieval. Further, the storage of the entire tensor is

unacceptable to most PCs. Although the storage space can be reduced to gigabyte (even mega-

byte) levels by using sparse representation and the computation of Kronecker products is

avoided in STFClus, the intermediate results during the tensor decomposition may be much

larger than the final result, and thus can lead to memory overflows.

To resolve such issues arising with larger-scale operations, we adopt the method introduced

in [39] to divide the tensors constructed from both the DBLP-full-areas dataset and the Dou-

ban Movie Network into a grid of multiple smaller-scale sub-tensors and thereafter the

STFClus is applied to all sub-tensors, and the results are re-constructed for the original tensors.

In the experiment, Matlab Distributed Computing Server toolbox and Parallel Computing

toolbox are used. All the experiments are run on a parallel system with 8 labs.

For DBLP-full-areas dataset, we divided the tensor with size 952,214 × 1,237,709 × 1,534 ×
192,995 into a 1,000 × 1,000 × 100 × 1,000 dimensional grid that consists of 1011 sub-tensors.

We find that more than 99.98% of sub-tensors are zero tensors, i.e., all elements in these sub-

tensors are zero elements. In practice, we maintain only the sparse sub-tensors, whose ele-

ments are not all zero elements, and their corresponding indices in the grid. Then, STFClus

runs on all the sparse sub-tensors, whose elements are not all zero elements, simultaneously.

For the sub-tensors whose elements are all zero elements, we set the elements in corresponding

factor matrices and core tensors equal to zero. Finally, the strategy of re-constructing factor

matrices and core tensor for original tensors in [39] is used. The same method is used to deal

with the Douban Movie Network. We divided the tensor with size 12,677 × 6,311 × 2,449 × 38

× 13,367 × 2,753 × 13,367 into a 100 × 10 × 10 × 1 × 100 × 10 × 100 dimensional grid consisting

of 109 sub-tensors. More than 97.54% sub-tensors are zero tensors.

We set the number of clusters K = 15 for DBLP-full-areas dataset and K = 20 for Douban

Movie Network. The details of implementation and results are summarized in Table 7. In

Table 7, the non-zero sub-tensor represents the elements of sub-tensor that are not all zero

elements.

From Table 7, we can see that the number of non-zero sub-tensors is very large, although

most sub-tensors are zero tensors in such a large-scale dataset. Moreover, all the non-zero sub-

tensors are very sparse. The total running time includes three constituents: grid generation,

parallel computing of STFClus, and factor matrices and core tensor reconstruction. For the

DBLP-full-areas dataset and the Douban Movie Network, the grid generation and factor matri-

ces and core tensor reconstruction took up most of the running time, while the parallel com-

puting of STFClus just cost 32.1% of the time on the DBLP-full-areas dataset and 21.68% of

the time on the Douban Movie Network. The system in total spent about 2.5 days to handle

the DBLP-full-areas dataset and almost 3 days to handle the Douban Movie Network.
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Discussion

The experimental results on both synthetic and real-world datasets show that STFClus is an

effective and efficient method for clustering heterogeneous information networks. It can han-

dle all types of objects simultaneously, and obtain a good clustering result without any infor-

mation on the network schema. In the experiments, we found that the random initialization of

STFClus may lead to the non-convergence. That is to say, a good initialization can improve

the performance of STFClus, and the STFClus_initial algorithm can provide a good start for

STFClus.

Unfortunately, the current STFClus_initial algorithm is not perfect. It is highly efficient for

sparse networks but not for dense networks. In other words, when the scale and density of the

heterogeneous information network becomes large, the time cost of the STFClus_initial algo-

rithm increases rapidly. In general, the network scale is usually large in real world applications,

so STFClus_initial algorithm performs better with amaller the network density. We must thus

make a compromise between the time complexity and efficiency of the whole method and this

is a trade-off to be optimized by users on case-specific basis.

However, case studies on two very large-scale datasets show that STFClus can be used to

analyze very large heterogeneous information networks off-line. The running time is accept-

able, and STFClus has demonstrated high accuracy clustering results which can be used as

prior knowledge for on-line analysis.

Conclusions

Many clustering methods for heterogeneous information networks have been proposed, such

as FctClus [4], NetClus [3], PathSelClus [6, 8] and so on. Each of them can deal with one type

of heterogeneous information networks with a specified network schema. However, for gen-

eral network schemas or in cases without any information of network schema, these clustering

methods are not useable. Tensor factorization is a powerful tool for clustering multi-dimen-

sional data. It has been widely used in some specific applications, such as computer graphics

[16] and vision [40]. However, many existing tensor factorization based clustering methods

focus on 3-mode tensors and clustering one mode of the tensor. In this paper, the STFClus

method is presented as a way to cluster heterogeneous information networks based on sparse

tensor factorization. The STFClus models heterogeneous information networks as a sparse

tensor. In this approach, each type of objects in the network was modeled as one dimension of

the tensor, and the relationships among different types of objects were modeled as the ele-

ments in the tensor.

In contrast to the existing clustering methods for heterogeneous information networks,

STFClus has two distinct advantages. Firstly, STFClus can model different types of objects and

the semantic relations in heterogeneous information networks without any information

Table 7. Case studies on DBLP-full-areas dataset and Douban Movie Network.

DBLP-full-areas dataset Douban Movie Network

Non-zero sub-tensors number 15,437,462 24,623,145

Max density 6.7225 × 10−8 4.5421 × 10−10

Average density 6.7083 × 10−10 5.0024 × 10−15

Running time (s) Grid generation 94,275 109,018

Parallel computing of STFClus 65,641 54,412

Factor matrices and core tensor reconstruction 44,548 87,521

Total time 204,461 250,951

doi:10.1371/journal.pone.0172323.t007
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regarding the network schema. In addition, based on the tensor factorization, STFClus can

cluster all types of objects simultaneously by running the algorithm only once; i.e. STFClus is

generally applicable single-pass clustering method for heterogeneous network which is net-

work schema agnostic.

Furthermore, an initialization algorithm is specifically developed for STFClus. In general,

the initialization algorithm is good at handling sparse networks. The experimental results

showed that STFClus can deal with large-scale and sparse heterogeneous information net-

works and perform better on networks with more types of objects. Moreover, STFClus can

handle overlapping and non-overlapping clusters simultaneously. STFClus outperforms the

state-of-the-art baselines on real-world datasets.

Nevertheless, STFClus is sensitive to the initialization of factor matrices and core tensor. A

good initialization can improve the performance of STFClus, while a sub-optimal initialization

may lead to an unacceptable slow convergence speed and unsatisfactory local minima.

Although the STFClus_initial algorithm can provide a good initialization, the time cost

increases rapidly for large scale and very dense networks.

In future work, this novel approach of clustering heterogeneous information networks

based on tensor factorization can be combined with other rank-based clustering methods, e.g.,

RankClus and NetClus. Another challenge in future work is to deal with dynamically changing

tensors as the heterogeneous information networks are changing. Possible solutions include

increasing the number of tensor modes, or the number of dimensions of the tensor.
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