90 research outputs found

    The detection of large amounts of cool, x ray absorbing gas in distant clusters of galaxies. What does this mean?

    Get PDF
    We present an x-ray spectral study of 12 distant (z = 0.17-0.54) rich clusters of galaxies observed with the Einstein Observatory Imaging Proportional Counter. These x-ray spectral data show evidence for substantial excess absorptions beyond those expected in the galaxy, indicating the presence of large amounts of x-ray absorbing cool gas in these distant clusters. The mean value of the excess absorptions corresponds to an absorbing gas column density approximately greater than 10(exp 21)/sq cm. We calculate the x-ray luminosities of the clusters with observed fluxes only in the 0.8-3.5 keV band where the fluxes are less effected by the absorptions, and use the temperature-to-luminosity correlation (known only for nearby clusters) to estimate the temperatures of the hot intracluster medium (ICM) in the distant clusters. These temperature estimates, together with the spectral fits, provide further constraints on the column densities in the individual clusters. For the cluster CL 0016+16, the lower limit on the column density is found to be 8 x 10(exp 20)/sq cm at the 99 percent confidence limit. We also show that the ratio of the temperature obtained from the spectral fit to the temperature expected from the correlation tends to decrease with increasing look-back time, indicating possible temperature evolution of the hot ICM in the recent past. The inclusion of this evolutionary effect further increases the absorptions required in fitting the spectra

    Local keypoint-based Faster R-CNN

    Get PDF
    Region-based Convolutional Neural Network (R-CNN) detectors have achieved state-of-the-art results on various challenging benchmarks. Although R-CNN has achieved high detection performance, the research of local information in producing candidates is insufficient. In this paper, we design a Keypoint-based Faster R-CNN (K-Faster) method for object detection. K-Faster incorporates local keypoints in Faster R-CNN to improve the detection performance. In detail, a sparse descriptor, which first detects the points of interest in a given image and then samples a local patch and describes its invariant features, is first employed to produce keypoints. All 2-combinations of the produced keypoints are second selected to generate keypoint anchors, which are helpful for object detection. The heterogeneously distributed anchors are then encoded in feature maps based on their areas and center coordinates. Finally, the keypoint anchors are coupled with the anchors produced by Faster R-CNN, and the coupled anchors are used for Region Proposal Network (RPN) training. Comparison experiments are implemented on PASCAL VOC 07/12 and MS COCO. The experimental results show that our K-Faster approach not only increases the mean Average Precision (mAP) performance but also improves the positioning precision of the detected boxes

    RNA Editing, ADAR1, and the Innate Immune Response

    Get PDF
    RNA editing, particularly A-to-I RNA editing, has been shown to play an essential role in mammalian embryonic development and tissue homeostasis, and is implicated in the pathogenesis of many diseases including skin pigmentation disorder, autoimmune and inflammatory tissue injury, neuron degeneration, and various malignancies. A-to-I RNA editing is carried out by a small group of enzymes, the adenosine deaminase acting on RNAs (ADARs). Only three members of this protein family, ADAR1–3, exist in mammalian cells. ADAR3 is a catalytically null enzyme and the most significant function of ADAR2 was found to be in editing on the neuron receptor GluR-B mRNA. ADAR1, however, has been shown to play more significant roles in biological and pathological conditions. Although there remains much that is not known about how ADAR1 regulates cellular function, recent findings point to regulation of the innate immune response as an important function of ADAR1. Without appropriate RNA editing by ADAR1, endogenous RNA transcripts stimulate cytosolic RNA sensing receptors and therefore activate the IFN-inducing signaling pathways. Overactivation of innate immune pathways can lead to tissue injury and dysfunction. However, obvious gaps in our knowledge persist as to how ADAR1 regulates innate immune responses through RNA editing. Here, we review critical findings from ADAR1 mechanistic studies focusing on its regulatory function in innate immune responses and identify some of the important unanswered questions in the field

    3D vasculature segmentation using localized hybrid level-set method

    Get PDF
    Background: Intensity inhomogeneity occurs in many medical images, especially in vessel images. Overcoming the difficulty due to image inhomogeneity is crucial for the segmentation of vessel image. Methods: This paper proposes a localized hybrid level-set method for the segmentation of 3D vessel image. The proposed method integrates both local region information and boundary information for vessel segmentation, which is essential for the accurate extraction of tiny vessel structures. The local intensity information is firstly embedded into a region-based contour model, and then incorporated into the level-set formulation of the geodesic active contour model. Compared with the preset global threshold based method, the use of automatically calculated local thresholds enables the extraction of the local image information, which is essential for the segmentation of vessel images. Results: Experiments carried out on the segmentation of 3D vessel images demonstrate the strengths of using locally specified dynamic thresholds in our level-set method. Furthermore, both qualitative comparison and quantitative validations have been performed to evaluate the effectiveness of our proposed model. Conclusions: Experimental results and validations demonstrate that our proposed model can achieve more promising segmentation results than the original hybrid method does

    Accurate geometry modeling of vasculatures using implicit fitting with 2D radial basis functions

    Get PDF
    Accurate vascular geometry modeling is an essential task in computer assisted vascular surgery and therapy. This paper presents a vessel cross-section based implicit vascular modeling technique, which represents a vascular surface as a set of locally fitted implicit surfaces. In the proposed method, a cross-section based technique is employed to extract from each cross-section of the vascular surface a set of points, which are then fitted with an implicit curve represented as 2D radial basis functions. All these implicitly represented cross-section curves are then being considered as 3D cylindrical objects and combined together using a certain partial shape-preserving spline to build a complete vessel branch; different vessel branches are then blended using a extended smooth maximum function to construct the complete vascular tree. Experimental results show that the proposed method can correctly represent the morphology and topology of vascular structures with high level of smoothness. Both qualitative comparison with other methods and quantitative validations to the proposed method have been performed to verify the accuracy and smoothness of the generated vascular geometric models

    ScribFormer: Transformer Makes CNN Work Better for Scribble-based Medical Image Segmentation

    Get PDF
    Most recent scribble-supervised segmentation methods commonly adopt a CNN framework with an encoder-decoder architecture. Despite its multiple benefits, this framework generally can only capture small-range feature dependency for the convolutional layer with the local receptive field, which makes it difficult to learn global shape information from the limited information provided by scribble annotations. To address this issue, this paper proposes a new CNN-Transformer hybrid solution for scribble-supervised medical image segmentation called ScribFormer. The proposed ScribFormer model has a triple-branch structure, i.e., the hybrid of a CNN branch, a Transformer branch, and an attention-guided class activation map (ACAM) branch. Specifically, the CNN branch collaborates with the Transformer branch to fuse the local features learned from CNN with the global representations obtained from Transformer, which can effectively overcome limitations of existing scribble-supervised segmentation methods. Furthermore, the ACAM branch assists in unifying the shallow convolution features and the deep convolution features to improve model’s performance further. Extensive experiments on two public datasets and one private dataset show that our ScribFormer has superior performance over the state-of-the-art scribble-supervised segmentation methods, and achieves even better results than the fully-supervised segmentation methods. The code is released at https://github.com/HUANGLIZI/ScribFormer

    LViT: Language meets Vision Transformer in Medical Image Segmentation

    Get PDF
    Deep learning has been widely used in medical image segmentation and other aspects. However, the performance of existing medical image segmentation models has been limited by the challenge of obtaining sufficient high-quality labeled data due to the prohibitive data annotation cost. To alleviate this limitation, we propose a new text-augmented medical image segmentation model LViT (Language meets Vision Transformer). In our LViT model, medical text annotation is incorporated to compensate for the quality deficiency in image data. In addition, the text information can guide to generate pseudo labels of improved quality in the semi-supervised learning. We also propose an Exponential Pseudo label Iteration mechanism (EPI) to help the Pixel-Level Attention Module (PLAM) preserve local image features in semi-supervised LViT setting. In our model, LV (Language-Vision) loss is designed to supervise the training of unlabeled images using text information directly. For evaluation, we construct three multimodal medical segmentation datasets (image + text) containing X-rays and CT images. Experimental results show that our proposed LViT has superior segmentation performance in both fully-supervised and semi-supervised setting. The code and datasets are available at https://github.com/HUANGLIZI/LViT

    ScribFormer: Transformer Makes CNN Work Better for Scribble-based Medical Image Segmentation

    Full text link
    Most recent scribble-supervised segmentation methods commonly adopt a CNN framework with an encoder-decoder architecture. Despite its multiple benefits, this framework generally can only capture small-range feature dependency for the convolutional layer with the local receptive field, which makes it difficult to learn global shape information from the limited information provided by scribble annotations. To address this issue, this paper proposes a new CNN-Transformer hybrid solution for scribble-supervised medical image segmentation called ScribFormer. The proposed ScribFormer model has a triple-branch structure, i.e., the hybrid of a CNN branch, a Transformer branch, and an attention-guided class activation map (ACAM) branch. Specifically, the CNN branch collaborates with the Transformer branch to fuse the local features learned from CNN with the global representations obtained from Transformer, which can effectively overcome limitations of existing scribble-supervised segmentation methods. Furthermore, the ACAM branch assists in unifying the shallow convolution features and the deep convolution features to improve model's performance further. Extensive experiments on two public datasets and one private dataset show that our ScribFormer has superior performance over the state-of-the-art scribble-supervised segmentation methods, and achieves even better results than the fully-supervised segmentation methods. The code is released at https://github.com/HUANGLIZI/ScribFormer.Comment: Accepted by IEEE Transactions on Medical Imaging (TMI

    High precision implicit modeling for patient-specific coronary arteries

    Get PDF
    High precision geometric reconstruction of patient-specific coronary arteries plays a crucial role in visual diagnosis, treatment decision-making, and the evaluation of the therapeutic effect of interventions in coronary artery diseases. It is also a fundamental task and a basic requirement in the numerical simulation of coronary blood flow dynamics. In this paper, a new implicit modeling technique for the geometric reconstruction of patient-specific coronary arteries has been developed. In the proposed method, the coronary arteries geometry is reconstructed segment by segment using radial basis functions with ellipsoid constraint from the point cloud obtained with a volumetric vascular image segmentation method, and the individually reconstructed coronary branches are then combined using a shape-preserving implicit blending operation to form a complete coronary artery surface. The experiment results and validations indicate that the reconstructed vascular shapes are of high smoothness and faithfulness
    • …
    corecore