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Abstract. Region-based Convolutional Neural Network (R-CNN) detectors have achieved state-of-

the-art results on various challenging benchmarks. Although R-CNN has achieved high detection 

performance, the research of local information in producing candidates is insufficient. In this paper, 

we design a Keypoint-based Faster R-CNN (K-Faster) method for object detection. K-Faster 

incorporates local keypoints in Faster R-CNN to improve the detection performance. In detail, a 

sparse descriptor, which first detects the points of interest in a given image and then samples a local 

patch and describes its invariant features, is first employed to produce keypoints. All 2-combinations 

of the produced keypoints are second selected to generate keypoint anchors, which are helpful for 

object detection. The heterogeneously distributed anchors are then encoded in feature maps based on 

their areas and center coordinates. Finally, the keypoint anchors are coupled with the anchors 

produced by Faster R-CNN, and the coupled anchors are used for Region Proposal Network (RPN) 

training. Comparison experiments are implemented on PASCAL VOC 07/12 and MS COCO. The 

experimental results show that our K-Faster approach not only increases the mean Average Precision 

(mAP) performance but also improves the positioning precision of the detected boxes.  
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1.  Introduction 

General object detection is a complex problem. One of the main tasks for object detection is the 

localization problem, which is used to assign accurate bounding boxes to different objects [1]. In the 

last two decades, object detectors based on Convolutional Neural Networks (CNNs) [2-5] have 

achieved state-of-the-art results on various challenging benchmarks [6-8]. As two representative 

Region-based CNN (R-CNN) methods, both Fast/Faster R-CNN [3, 4] and Region-based Fully 

Convolutional Network (R-FCN) [9] use a Region Proposal Network (RPN) to generate region 

proposals. RPN initializes anchors of different scales and aspect ratios at each convolutional feature 

map location [4]. Although the anchor potentially covers the object of interest, it does not focus on 

local information. When a human identifies an object, both global structural information and local 

individual information are used in the identification [10].  

Our work is motivated by the following two questions. First, is it possible to use local information 

to generate region proposals? Second, if the first answer is positive, are the generated proposals 

helpful for the performance of object detection? To meet this goal, we employ a keypoint as a kind of 

local information and fuse it in RPN in this study. 

Fig. 1 shows an example of object detection by combining Faster and keypoint anchors. Faster R-

CNN cannot produce proposals for the bus, partially due to the error between the ground truth and the 

initialized anchor box. Although Faster R-CNN uses bounding-box regression to adjust the error from 
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an anchor box to a ground-truth box, the regression may be powerless when the error between them is 

too large. By combining the two kinds of anchors, both the bus and car in Fig. 1a can be correctly 

detected. 

 

Fig. 1 An example of object detection by combining Faster and keypoint anchors. 

In this work, we propose the keypoint-based Faster R-CNN method (K-Faster), which incorporates 

local keypoints in Faster R-CNN for object detection. All 2-combinations of the produced keypoints 

on an image are selected to generate bounding boxes, which are keypoint anchors (Fig. 1c). Every 

keypoint anchor is arranged in a convolutional network based on an Area Ratio of the Anchor to the 

Image (ARoAI) and the center coordinates of the anchor. On the one hand, a feature map with a lower 

index is designed to encode an anchor with a greater ARoAI, while a feature map with a higher index 

is used to encode an anchor with a smaller ARoAI. On the other hand, a grid point in a feature map is 

used to encode an anchor if the center coordinates of the anchor are convolved to the grid. The 

keypoint anchors together with Faster anchors, which are boxes with fixed scales and aspect ratios [4], 

are trained by RPN to produce proposals. Our approach employs the keypoint as a kind of local 

information and fuses it with Faster R-CNN for region proposal. The keypoints around the object may 

produce a keypoint anchor with a certain aspect ratio or size that cannot be covered by the anchors of 

Faster R-CNN. The keypoint anchor is helpful for region proposals, and the coupling anchors make 

the model have a more powerful ability. Extensive experiments implemented on PASCAL VOC 

07/12 and MS COCO demonstrate that K-Faster can improve the detection performance. 

Our main contributions are summarized as follows: 

1. We incorporate local keypoints in Faster R-CNN to improve object detection. The designed 

keypoint anchors are coupled with Faster anchors to cover the deficiency of Faster R-CNN, which 

initializes anchor boxes with preset aspect ratios and sizes. 

2. We design an area-based technology to encode anchors with a heterogeneous distribution. 

Because the keypoints are attracted to pixels with heterogeneous intensity, the heterogeneously 

distributed anchors are partitioned in groups using ARoAI and are encoded in feature maps for RPN 

training. 

3. Compared with Faster R-CNN, our K-Faster approach not only increases the mean Average 

Precision (mAP) performance but also improves the positioning precision of the detected boxes. 
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2. Related work 

In recent years, object detection has achieved superior performance with the implementation of 

CNN [2-5, 11-13]. Generally, CNN-based object detection methods may be divided into two groups: 

(1) region proposal-based two-stage method and (2) the proposal-free one-stage method [14-16]. 

2.1. Two-stage method 

R-CNN [17], Fast R-CNN [3], Faster R-CNN [4], R-FCN [9] and Mask R-CNN [12] are 

representative two-stage methods. Although R-CNN can be considered as a milestone of the two-

stage method for object detection, it classifies every region proposal separately and is time-consuming 

[14, 16]. Fast R-CNN shares computation between the proposal extraction and classification steps 

using ROI-Pooling and therefore improves the efficiency greatly. Faster R-CNN designs RPN to 

generate proposals from anchor boxes and achieves further increases in speed and precision. R-FCN 

further improves speed and accuracy by removing fully connected layers and adopting position-

sensitive score maps for final detection [9, 16]. Mask R-CNN, which may be used for object instance 

segmentation and bounding box detection, extends Faster R-CNN by adding a branch that outputs the 

object mask [12]. 

Recently, many technologies have been designed to improve object detection. In order to combine 

multiple convolutional features, the multi-scale technology is employed for improvement [18, 19]. 

Sean et al. designed an Inside-Outside Net (ION) [18], which concatenated multiple convolutional 

features to improve object detection. In [19], a Multi-scale Location-aware Kernel Representation 

(MLKP) is proposed to capture high-order statistics of deep features in proposals. Li et al. proposed a 

Zoom-out-and-In network for object Proposals (ZIP) and employed a Map Attention Decision (MAD) 

unit to search for neuron activations [20].  

Since knowledge may be helpful for object detection, some studies focus on knowledge 

[10][21][22]. As shown in [10], the authors designed CoupleNet to couple the global structure with 

local parts for object detection. As a class of corner-based detector, DeNet evaluates the distribution 

of the box corners to refine bounding boxes for improvement [21]. Jiang et al. introduced an object 

co-detection method (CRFNet) that exploited contextual information among multiple images through 

a higher-order conditional random field [22]. 

2.2. One-stage method 

Alternatively, one-stage detectors, such as You Only Look Once (YOLO) [5], Single Shot 

MultiBox Detector (SSD)[23], and CornerNet [24] detect objects in a single network. They are 

usually more computationally efficient than two-stage detectors [1][24]. Compared with two-stage 

methods, YOLO does not require proposals. YOLO forwards the input image once through a 

convolutional network to directly predict object classes and locations, and therefore it is extremely 

fast [5]. Combining dense anchor boxes and pyramid features, SSD directly classifies anchor boxes 

[23]. CornerNet, which uses an hourglass network as its backbone, detects each object bounding box 

as a pair of keypoints [24]. 

Many one-stage detectors share similarity with SSD. Similar to the frame work of SSD, the 

network structure of Deeply Supervised Object Detector (DSOD) is divided into two parts: the 

backbone sub-network for feature extraction and the front-end sub-network for prediction over multi-

scale response maps [16]. RetinaNet uses features pyramids occurred in SSD to address the extreme 

foreground-background class imbalance during training of dense detectors [25]. By attaching the 
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Context Enhancement Blocks (CEBs) to the shallow layers in SSD, an advanced one-stage detector 

CEBNet is proposed in [26]. 

In this study, we focus on the improvement of Faster R-CNN using local keypoints. Although 

DeNet [21] and CornerNet [24] are point-based CNN methods, their flowcharts are complex. As a 

two-stage method, DeNet needs to jointly optimize the costs of both stages, i.e., the corner probability 

distribution, final classification distribution and bounding box regression cost [21]. The network of 

CornerNet may be divided in three modules: an hourglass backbone network and two prediction 

streams . In our design, the network modules are similar with Faster R-CNN. The main task of K-

Faster is to couple keypoint anchors with Faster anchors to cover the deficiency of Faster R-CNN, 

which initializes anchor boxes with preset aspect ratios and sizes. 

3. Proposed method 

3.1 Overview of methodology 

The main design of our proposed method is to use local information to train candidates. In this 

study, we employ keypoint anchors to achieve the design. Fig. 2 shows the main design of our method. 

Fig. 2a shows the input image I with a size WH. Fig. 2b shows the produced keypoints. Fig. 2c 

shows all the resulting anchor boxes, which total 
2

NC , and N is the number of total keypoints. To train 

an RPN, a positive or negative anchor with a high or low Intersection over Union (IoU) overlap with a 

ground-truth box, called the Anchor of Interest (AoI), should be assigned a positive or negative label. 

The bias between the anchor box and ground truth box, which is called the ground bias, should be 

calculated to supervise bounding box regression. To arrange the labels and ground biases to 3-

Dimensional (3-D) tensors, which serve as supervision information for the RPN, the anchors in Fig. 

2c are partitioned into kS groups based on the ARoAI, as shown in Fig. 2d. All labels of the AoIs in 

each group are arranged on a corresponding 2-Dimensional (2-D) feature map, which indicates the 

convolution results of one channel [27] (Fig. 2e). For every AoI, its label is mapped to a layer position 

based on the coordinates of the anchor center (Fig. 2e). Every ground bias is parameterized by 4 

coordinates and therefore is encoded on 4 feature maps in a similar way, as shown in Fig. 2f. Figs. 2g 

and 2h are label and ground bias tensors obtained from Faster R-CNN, respectively. Fig. 2i shows 

supervision information for RPN, and Figs. 2i1 and 2i2 show coupled tensors. Based on the integrated 

supervision information, our method follows a network similar to that of Faster R-CNN. 
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Fig. 2. Flowchart of the construction of the supervision information for RPN. (a) Input image. (b) Local keypoints. 

(c) The resulting anchor boxes after enumerating all 2-combinations. (d) Area-based boxes partition. (e) 3-D label 

tensor induced by the keypoints. (f) 3-D ground bias tensor induced by keypoints. (g) and (h) are label and bias 

tensors of Faster R-CNN, respectively. (i) The supervision information of our method for RPN. (i1) and (i2) show 

label and bias tensors for RPN, respectively. 

3.2 Keypoint detection 

In order to improve the smartness of the region proposal, the keypoint, which involves local 

information, is employed to improve the coverage ability of anchors. Generally, the keypoint is 

coupled with a descriptor. In this work, a sparse descriptor, which first detects the points of interest in 

a given image and then samples a local patch and describes its invariant features [28], is employed to 

produce the keypoint. 

During the last two decades, a large variety of sparse descriptors have been developed, including 

classical Scale-Invariant Feature Transform (SIFT) [29] and Speeded-Up Robust Feature (SURF) [30] 

descriptors, binary descriptors [31], and learning-based descriptors [32][33]. Although learning 

methods can achieve great accuracy, they usually produce large dimension features and are 

computationally expensive [32][33]. In addition, the preparation of substantial data for training is not 

a trivial subject. In order to produce as many AoI as possible, a robust keypoint detector that detects 

as many corresponding keypoints on the image is needed. Although binary descriptors are usually 

proposed in a simple presentation, they may be insufficient for producing massive keypoints based on 

experiments in [34]. Although SURF is more efficient for registration types of tasks, it is insufficient 

for producing enough keypoints [34]. In this paper, a Global OPtimized SIFT (GOP), which was 

demonstrated to produce many more keypoints in [34], is employed for keypoint detection. 

3.3 Generating keypoint anchors 

All 2-combinations of the produced keypoints are enumerated to generate anchors. Let the number 

of keypoints produced by GOP be GN . Because multiple descriptors may be produced at one 
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keypoint [29], the same keypoints are merged into one keypoint. Let the keypoints after merging be 

 0 0 0 0 0= ( , ) 0,1, , , ,K i i i K i iP p x y i N x y= =  . For a 2-combination of points 
0 0( , )i jp p  extracted from 

KP , let its corresponding anchor be 
0 0 0 0 0( , , , )ij i i j ja x y x y= , where 

0 0 0 0, ,i j i jx x y y   

0 0 0 0( , ), ( , )i i j j Kx y x y P . The anchor 
0

ija  with small area should be ignored because a proposal with 

small area is filtered in the stage of proposal refinement [4]. Let fas desA A A=   be the final resulting 

anchors, where fasA  is the set of anchors produced by Faster R-CNN; 

   0 0= ( ) =( , , , )des ij ij sa ij i i j jA a s a T a x y x y  is the set of anchors produced by keypoints, ( )s •  is the 

pixel area of • , and saT  is a threshold. 

3.4 Encoding keypoint anchors 

To generate region proposals, a box-regression layer (reg) and a box-classification layer (cls) are 

used to map the coordinates and scores of the proposals in the framework of Faster R-CNN [4]. In this 

study, we integrate keypoint and Faster R-CNN anchors to design reg and cls. The label and ground 

bias induced by the keypoint should be mapped in 3-D tensors as the supervision information to train 

reg and cls. 

Let  ( , ) 0,1, , 1; 0,1, , 1RPNfm r c r h c w= = − = −  be the 2-D feature map of the last shared 

convolutional layer; h  and w  are respectively the numbers of rows and columns of the map. Let the 

labels fed to cls be a 3-D tensor, denoted as 

 ( , , ) 0,1, , 1; 0,1, , 1; 0,1, , 1cLt l r c l k r h c w= = − = − = − , where c f Sk k k= + , Sk  and fk  are 

respectively the number of maximum possible proposals induced by keypoints and Faster R-CNN at 

each point of RPNfm . Lt  may be decomposed into two sub-tensors, as shown in (1): 

 fas desLt Lt Lt=  ,  (1) 

where ( )fas fLt Lt l k=   is the part of the tensor induced by Faster R-CNN (Fig. 2g) and 

( )des f cLt Lt k l k=    is the part of the tensor induced by the keypoint (Fig. 2e). Furthermore, the 3-D 

desLt  may be expressed as a set of 2-D feature maps, as shown in (2). 

  
1

0

Sk

t

des des

t

Lt fm
−

=

= , (2) 

where 
t

desfm  is the feature map of the t-th channel. 
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In order to arrange the label and ground bias in 3-D tensors, we partition the set of keypoint 

anchors desA  into Sk  groups, as shown in (3): 

  
1

0

Sk

t

des des

t

A A
−

=

= , (3) 

where if 
t

ij desa A , then 

1

1

(2 ,2 ], 0,1, , 2
( )

( ) (2 , ), 1S

t t

ST
ij k

ij S

t ks
ARoAI a

s a t k

+

−

 = −
= 

+ = −

,

 

 

Ts  is a threshold that is the base size of the image set. 

Combining (2) and (3), we map ( , , , ) t

ij i i j j desa x y x y A=   to the t-th feature map 
t

desfm  at position

, ( , )
2 2

i j i jc c c

ij ij ij

x x y y
p x y

r r

+ + 
=  
 

, where  /r H h=  is the feature stride from the input image to the 

feature map RPNfm . 

The ground bias tensor  ( , , ) 0,1, , 4 1b b cBt l r c l k= = −  may be decomposed into two bias 

tensors, as shown in (4). 

 fas desBt Bt Bt=  ,  (4) 

where ( 4 )fas b fBt Bt l k=   is the part of tensor induced by Faster R-CNN (Fig. 2h) and

(4 4 )des f b cBt Bt k l k=    is the part of the tensor induced by the keypoint (Fig. 2f). desBt  may be 

expressed as (5): 

 

4 1

0

Sk

t

des des

t

Bt fm
−

=

= . (5) 

Combining (3) and (5), for any 
t

ij desa A , we map its ground biases to 
4t

desfm , 
4 +1t

desfm , 
4 +2t

desfm , and 

4 +3t

desfm  at the position 
c

ijp . 

For ij fasa A , the mappings of fasLt  and fasBt  are similar to those in [4]. After the label and 

ground biases of all ija  are mapped in their corresponding tensors, the 3D tensors Lt  and Bt  serve as 

supervision information to train the RPN.  
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3.5 The encoding steps 

In this Section, we present encoding steps of our proposed method. Table 1 shows the input variables 

and comments used in this Section. KP  and Sk  are two key parameters of our method. fk is the 

parameter for anchors of Faster R-CNN. gtb , w, and h are parameters produced by input image. The 

other four variables are thresholds for RPN training. 

Table 1 Variables used in our method. 

Variable Comment 

KP  A set with KN  keypoints 

Sk
 

The number of channels of the label tensor induced by keypoints 

fk  The number of channels of the label tensor induced by Faster R-CNN 

gtb  The array of ground truth boxes with the size of 4 gtN  

w The number of columns of the last shared convolutional tensor 

h The number of rows of the last shared convolutional tensor 

_RPN poT  The IoU threshold for positive anchors 

_RPN noT  The IoU threshold for negative anchors 

_RPN bsT  The threshold of the number of anchors for RPN training 

_RPN fgr  The ratio of the anchors that are labeled as foreground 

For convenience, Fig. 3 shows the illustration of our mapping. Let the Faster anchors of be an 

array 
4afN

fasA


  , the keypoint anchors be an array 
 4adN

desA


 . Then 

 
( ) 4af ad

fas

des N N

A
A

A
+ 

 
=  
 

 (6) 

is the array of all the anchors, which is coupled vertically by fasA  and desA  (Fig. 3a). Let 

 
( ) 4af ad

fas

des n N

A
A

A
+ 

 
 =  

 
, (7) 

which is resulted from A after removing the anchors that are not inside the image (Fig. 3b). Let a 

query list between A and A  be qA , where the k-th anchor in A  corresponds to the kqA -th anchor in 

A (Figs. 3a and 3b). The labels of A  are initialized to [  ] ( 1, , 1) af adn N

fas deslA lA lA
+

 = = − −  , where 

afn

faslA   adN

deslA  . 

Let 
1 fwhk

fasLt   and 1 Swhk

desLt   be 1-Dimensional (1-D) label tensors, which are respectively 

reshaped from 3-D tensors fasLt  and desLt  in the dimension order of channel, width, and height, as 

shown the red arrowed line in Fig. 3d. Then the 1-D label tensor of Lt  is 
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( )1 1 1[  ] f Swh k k

fas desLt Lt Lt
+

=  , which is initialized to 
1 ( 1, , 1)Lt = − − . In order to map the anchors in 

the list of desA  to the 1-D tensor 
1

desLt  introduced in Section 3.4, a query list 

  ( ),( )i j ij ij ijlq ind a row col cha= + +  (8) 

is designed to map the ,( )i jind a -th anchor in desA  to the ( ),( )i jlq ind a -th label in the 1-D tensor 
1

desLt , 

where ,( )i jind a is the index of ,i ja  in desA ; 
c

ij S ijrow wk y= ; 
c

ij S ijcol k x= ; 

1arg ( ) (2 ,2 ]t t

ij i j
t

cha ARoAI a + =  
.  

Figs. 3c-3e illustrate the mapping from the list of keypoint anchors to the label tensors. Take the 0-

th keypoint anchor 01a  (Fig. 3c) for example, its label is arranged in the 3-D tensor desLt  at 

( )01 01, ,c cx y t , as shown the yellow square in Fig. 3d, where ( )01 01 01,c c cx y p=  corresponds to the center 

coordinate of 01a , t is obtained by ARoAI. After fetching the elements along with the red arrowed line 

in Fig. 3d, the 3-D tensor desLt  (Fig. 3d) is reshaped to 1-D tensor 
1

desLt  (Fig. 3e). The label of the 0-

th keypoint anchor (the blue item in Fig. 3c) is arranged to 
1

desLt  at ( ) 01 010 c c

S Slq wk y k x t= + +  (the 

yellow item in Fig. 3e). 

 

Fig. 3. Illustration of the mapping from anchor to tensor. (a) Array of all the anchors A. (b) Array of all the anchors 

inside image A . (c) The list of keypoint anchors. (d) 3-D label tensor desLt . (e) 1-D label tensor 
1

desLt . 

Let the overlapping array generated by the anchors and the ground truth boxes be

( )
( )af ad gt

ij n N N
O o

+ 
= , where ijo  is the overlap between the i-th anchor of A  and the j-th ground truth 

box in gtb . Let the row maximums of O  be a vector max
af adn N

r
+

 , i.,e., the k-th element kr  of maxr  is 
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the maximum of the k-th row in O ; Let the anchor indexes of the column maximums of O  be the 

vector max
gtN

c  , i.e., the k-th element kc of maxc is the index of the maximum of the k-th column in 

O . Then, the indexes of the anchors with positive label in A  for RPN training can be obtained as 

follows: 

(1.1) Let 1ilA =  if _i RPN por T  or ki c= . Obtain all the indexes of the anchors with the positive 

label 1, i.e.,
 1 2( 1)=( , , )ind lA i i = ; 

(1.2) Let 
_ _ _RPN fg RPN fg RPN bsT r T =   . Randomly choose 

_RPN fgT  elements in ( 1)ind lA =  if the 

number of the assigned positive label in (1.1) is greater than 
_RPN fgT . Let 

_
( 1)

RPN fgTpa ind lA =  be 

the set of selection; 

(1.3) The index vector of the anchors with positive label in A  for RPN training is 

[  ]fas despa pa pa , where 
_RPN fgTpa pa=  if (1.2) is executed, otherwise ( 1)pa ind lA= = . 

The indexes of the anchors with negative label in A  for RPN training are obtained as follows: 

(2.1) Let 0ilA =  if 
_i RPN nor T . Obtain all the indexes of the anchors with the negative label 0, i.e.,

 

1 2( 0)=( , , )ind lA i i = ; 

(2.2) Let _ _RPN bg RPN bsT T np= − . Randomly choose 
_RPN bgT  elements in ( 0)ind lA =  if the number 

of the assigned negative label is greater than 
_RPN bgT . Let 

_
( 0)

RPN bgTna ind lA =  be the set of 

selection; 

(2.3) The index vector of the anchors with negative label in A  for RPN training is 
_RPN bgTna na=  if 

(2.2) is executed, otherwise ( 0)na ind lA= = . 

Based on ( )faspa i  and ( )fasna i , i.e., the positive and negative indexes of fasA  in Fig. 3b, the 1-D label 

tensor 
1

fasLt  is obtained using query list qA :  

(3.1) For every ( )faspa i , let the ( ( ))fasqA pa i -th label in 
1

fasLt  be 1, i.e., ( )1 ( ( )) 1fas fasLt qA pa i = ; 

(3.2) For every ( )fasna i  , ( )1 ( ( )) 0fas fasLt qA na i = . 

Based on ( )despa i  and ( )desna i , i.e., the positive and negative indexes of desA  in A  (Fig. 3b), the 1-D 

label tensor 1

desLt  is obtained using query list lq :  
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(4.1) For every ( )despa i , the label of the ( )des afpa i n− -th anchor in desA  is 1. Therefore, let the 

( )( )des aflq pa i n− -th label in 1

desLt  be 1, i.e., ( )( )1 ( ) 1des des afLt lq pa i n− = ; 

(4.2) For every ( )desna i , ( )( )1 ( ) 0des des afLt lq na i n− = . 

For the 2-D array of ground bias 
( ) 42 f Swh k k

Bt
+ 

 , it is initialized to 2 0Bt = . In order to evaluate 

the loss of the bounding box regression, the regressions of the anchors with positive and negative 

labels are weighted. Let 
( ) 42 2 0 f Swh k k

in outW W
+ 

= =   be the initialization of the positive and negative 

weights. All the four regressions of the i-th row in 2

inW  are assigned with weight 1 if the i-th label of 

1Lt  is 1. And the rows of 2

outW  corresponding to negative anchors with the label 0 are assigned with 

weight 
11 Card( 0)posT Lt=  , Card( )•  is the cardinality of • . 

The encoding steps of the supervision information for RPN training are as follows. Lt , Bt , inW , 

and outW  are outputs, where Lt  and Bt  are label and ground bias tensors, respectively; inW  and outW  

are weight tensors used to evaluate the loss of the bounding box regression. 

Step 1: Generate the array of Faster anchors fasA . 

Step 2: Generate the keypoint anchors desA  based on Section 3.3. 

Step 3: Result in A  and A  based on (6) and (7), respectively. 

Step 4: Build a query list qA  between A and A . 

Step 5: Build a query list ( ),( )i jlq ind a from the anchors in desA  to the labels in the 1-D tensor 
1

desLt  

based on (8). 

Step 6: Assign the overlapping array O , and result in 
maxr  and maxc . 

Step 7: Obtain the indexes of the anchors with positive and negative labels in A  for RPN training 

based on (1.1)-(1.3) and (2.1)-(2.3), respectively. 

Step 8: Assign anchor labels to 
1

fasLt  and 1

desLt  based on (3.1)-(3.2) and (4.1)-(4.2), respectively. 

Step 9: Reshape 
1

fasLt  and 1

desLt  to 3-D tensors fasLt  and desLt  respectively in the dimension order of 

channel, width, and height. Couple the two tensors to Lt, as shown in (1). 

Step 10: Compute the ground bias of all the anchors in A , and assign them to 2Bt  using query lists 

qA  and lq . 
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Step 11: Obtain 2

inW  and 2

outW .  

Step 12: Separate 2Bt , 2

inW , and 2

outW  vertically into two parts that are respectively in size of 

4fwhk   and 4Swhk  . Reshape and couple them to 3-D tensors Bt , inW , and outW  similar 

to Step 9. 

4. Experiments 

We evaluate our method on three datasets: PASCAL VOC 2007 [8], PASCAL VOC 2012 [8], and 

MS COCO [6]. Our experiments are implemented based on the framework of Faster R-CNN [4]. Both 

VGG16 [11] and ResNet101 [13] are employed as our backbone networks. The VGG16-based and 

ResNet101-based experiments are carried out respectively on Caffe [35] and TensorFlow [36]. We 

train and test networks on images of a single scale in which the shorter side is s=600 pixels [4]. The 

publicly available VGG16 and ResNet101 models pre-trained on ImageNet [2, 7] are used for 

corresponding initialization. We use a 1-GPU implementation, and thus the mini-batch size of RPN is 

1. The models are trained starting from conv3_1 using an end-to-end schedule. The momentums are 

set as 0.9. The weight decay of K-Faster based on VGG16 is set to 0.0005 and that of K-Faster based 

on ResNet101 is set to 0.0001. The mAP is primarily used to evaluate the detection performance. 

4.1. Implementation detail 

We tune the parameters on PASCAL VOC. The models are trained on the union set of VOC 2007 

trainval and VOC 2012 trainval (“07+12”). They are evaluated on VOC 2007 test set. We initialize a 

learning rate of 0.001 and make the learning rate drop 10 times after every 50k iterations on the 07+12 

dataset. A total of 140k training iterations are run.  

In addition to thresholds saT  and Ts , two main parameters NG and Sk  are introduced in this work. 

NG and Sk  are the number of keypoints and the number of the channels of the keypoint-based label 

tensor, respectively. In our design, saT  is set to 16 to filter out small keypoint anchors, and Ts  is set to 

6001000, which is the multiplication of the lower boundary and upper boundary of the input image 

size. For Sk , it is appropriate to let it be 16 when Ts  = 6001000 because the anchors with the size 

less than 1616 are convoluted to 1 point in the last shared convolutional layer. In detail, the anchors 

with the size less than 6001000/21518.3 are mapped to the 1 15Sk − = -th feature map. In addition, 

because the tensor induced by the keypoint anchors is coupled with the tensor induced by Faster 

anchors for RPN training, corresponding parameters of K-Faster may be different from those of Faster 

R-CNN. The corresponding parameters are the number of anchors chosen for RPN training in an 

image (
RPN

BSN ), the number of regions of interest in an image for classification ( RoIN ), the number of 

top scoring boxes to keep before applying Non-Maximum Suppression (NMS) to RPN proposals 
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(
pre

NMSN ), and the number of top scoring boxes to keep after applying NMS to RPN proposals (
post

NMSN ). 

Above all, NG, 
RPN

BSN , RoIN , 
pre

NMSN , and post

NMSN  are the five parameters that we tune in this work.  

4.1.1. The parameter NG 

We run VGG16-based experiments to evaluate NG using the encoding steps introduced in Section 

3.5. We first train seven different models on seven levels of NG with 448RPN

BSN = , 128RoIN = , 

18kpre

NMSN = , and 2kpost

NMSN = . Every model is then tested with seven groups of parameters (
pre

NMSNt , 

post

NMSNt ), where 
pre

NMSNt  and post

NMSNt are respectively the number of top-scored RPN proposals before and 

after applying NMS in the stage of detection. The seven groups of (
pre

NMSNt , post

NMSNt ) are (6k, 300), (9k, 

300), (9k, 450), (12k, 600), (15k, 750), (18k, 750), and (18k, 900). Table 2 summarizes the key results 

on the seven models. The test results with the greatest mAP are listed in the line of mAP in Table 2. 

The lines of Rec, Pre, 
pre

NMSNt , and post

NMSNt  in Table 2 are respectively the recalls, precisions, and 

testing parameters that correspond to the greatest mAP. Together with ground truth, the true positive 

and false positive samples are used to calculate the recall and precision on every class. A predicted 

detection is regarded as a true positive if the predicted class label is the same as the ground truth label 

and the IoU between the predicted bounding box and the ground truth one is greater than 0.5, 

otherwise the detection is a false positive one. The results of Rec and Pre listed in Table 2 are the 

averages of the recalls and precisions over all the classes.  

Table 2. Experiments of GN  on the PASCAL VOC 2007 test set. 

NG 120 160 200 300 400 500 600 

mAP(%) 75.8 76.2 76.2 76.1 76.2 75.8 76.1 

Rec(%) 88.4 88.3 88.0 88.1 87.2 86.0 86.1 

Pre(%) 19.9 22.7 21.9 23.6 26.9 29.7 30.0 

pre

NMSNt  18k 18k 12k 15k 15k 15k 18k 

post

NMSNt  900 900 600 750 750 750 900 

NG=400 is chosen for our proposed method. The recall rate ranges roughly from 88.4% to 86.1%. 

Simultaneously, the precision ranges from 19.9% to 30.0%. It can be seen that a greater NG takes 

advantage in precision, but a greater NG results in a smaller recall rate. Although NG=160, 200, and 

400 are all able to obtain a similar greatest mAP 76.2%, NG = 400 brings a greatest precision (Table 2). 

Therefore, NG with a value of  400 is chosen for K-Faster. 

4.1.2. RPN parameters 

In this Section, we implement experiments on 07+12 using VGG16-based network to tune 
RPN

BSN , 

RoIN , 
pre

NMSN , and post

NMSN . For NG = 400, the number of the induced keypoint anchors ranges roughly 
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from 40k to 60k. The number of the keypoint anchors with IoU  0.7 ranges from zero to several 

hundreds. We tune the four parameters of K-Faster in the range of one to two times of those used in 

Faster R-CNN. For simplicity, the parameters 
pre

NMSNt  and post

NMSNt  used for NMS in the stage of 

detection are set to 9k and 300, respectively. Table 3 shows our main experimental results.  

Table 3. Experiments of RPN parameters on the PASCAL VOC 2007 test set. 

RPN

BSN  RoIN   
pre

NMSN  
post

NMSN  Rec(%) Pre(%) mAP(%) 

448 256 24k 4k 85.7 30.8 76.3 

512 256 24k 4k 85.3 30.7 75.3 

448 196 24k 4k 85.7 30.4 76.1 

448 256 18k 4k 85.4 33.7 75.7 

448 256 24k 2k 85.4 31.3 75.6 

As shown in the first and second lines in Table 3, the experimental levels of RPN

BSN  are different but 

the other three parameters are the same. Both the recall and precision obtained by =448RPN

BSN  are 

greater than those obtained by =512RPN

BSN , therefore, 448RPN

BSN =  takes advantage in mAP. The one-

factor-at-a-time experiments on RoIN  are listed in the first and third lines in Table 3. It can be seen 

that 256RoIN =  is more appropriate than 196. Similarly, pre

NMSN =24k and post

NMSN =4k take advantage in 

mAP.  

Extended experiments on the same four parameters based on ResNet101 show similar results. This 

is partially due to the same structure of their RPN. Overall, the RPN parameters RPN

BSN , RoIN , pre

NMSN , 

and post

NMSN  are respectively tuned to be 448, 256, 24k, and 4k for K-Faster. 

4.2. Results on PASCAL VOC 

In this Section, we demonstrate that local information is helpful in terms of object detection. We 

evaluate K-Faster on the PASCAL VOC 2007 detection benchmark [8] together with VOC 2012. For 

the experiments on the set of PASCAL VOC 2007 test, the 07+12 dataset is used for training. For the 

PASCAL VOC 2012 test set, we use the 10k trainval+test images in VOC 2007 and 16k trainval 

images in VOC 2012 for training (“07++12”).  

We initialize a learning rate of 0.001, and make the learning rate drop 10 times after every 80k 

iterations on the 07+12 dataset. The networks based on VGG16 and ResNet101 are respectively run 

180k and 200k training iterations. Table 4 shows our experimental results on the test set of VOC 2007. 

The rows of K-Faster16 and K-Faster101 show the results of our method using VGG16 and 

ResNet101 as the backbone networks, respectively. The notation “-” shows that corresponding result 

is unavailable. 
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Table 4. Results on the PASCAL VOC 2007 test set (%). Training data: “07+12”: VOC 2007 trainval together with 

VOC 2012 trainval. 

Method mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv 

One-stage detector 

SSD512 [22] 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 72.0 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3 

YOLOv2 [5] 78.6 - - - - - - - - - - - - - - - - - - - - 

DSOD300 [16] 77.7 - - - - - - - - - - - - - - - - - - - - 

CEBNet300 [26] 80.8 - - - - - - - - - - - - - - - - - - - - 

CEBNet512 [26] 82.5 - - - - - - - - - - - - - - - - - - - - 

Two-stage detector 

Fast [3] 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 

Faster [4] 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6 

Faster101 [13] 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0 

ION [18] 74.6 78.2 79.1 76.8 61.5 54.7 81.9 84.3 88.3 53.1 78.3 71.6 85.9 84.8 81.6 74.3 45.6 75.3 72.1 82.6 81.4 

R-FCN [9] 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9 

CoupleNe t[10] 82.7 85.7 87.0 84.8 75.5 73.3 88.8 89.2 89.6 69.8 87.5 76.1 88.9 89.0 87.2 86.2 59.1 83.6 83.4 87.6 80.7 

DeNet101 [21] 77.0 - - - - - - - - - - - - - - - - - - - - 

CRFNet [22] 72.2 72.6 82.3 73.0 56.7 54.9 79.4 84.6 83.2 54.3 77.5 66.8 81.3 83.4 78.2 79.5 42.7 69.6 71.1 81.8 71.0 

MLKP16 [19] 78.1 78.7 83.1 78.8 71.3 64.4 86.1 88.0 87.8 64.6 83.2 73.6 85.7 86.4 81.9 79.3 53.1 77.2 76.7 85.0 76.1 

MLKP101 [19] 80.6 82.2 83.2 79.5 72.9 70.5 87.1 88.2 88.8 68.3 86.3 74.5 88.8 88.7 82.0 81.6 56.3 84.2 83.3 85.3 79.7 

ZIP MAD [20] 76.8 74.1 80.1 76.0 65.7 55.4 83.5 85.3 87.5 54.2 87.3 68.6 87.4 85.2 77.2 77.7 40.9 77.8 77.5 84.6 70.3 

K-Faster16 77.2 75.9 84.0 77.4 65.5 62.7 86.4 87.5 89.0 61.0 84.5 71.3 86.2 87.1 78.7 79.0 51.8 77.8 75.6 83.1 76.3 

K-Faster101 80.5 80.3 87.0 79.3 74.5 68.8 88.9 88.5 88.9 66.9 86.9 75.2 88.5 87.6 84.7 80.0 53.7 83.7 80.3 85.1 80.8 

Keypoint anchors provide an extra auxiliary discrimination. As shown in Table 4, our K-Faster16 

and K-Faster101 achieve mAPs of 77.2% and 80.5% on the PASCAL VOC 2007 test set, 

respectively. Compared with the baseline Faster R-CNN, corresponding improvements of the mAPs 

are respectively 4.0% and 4.1%. Because K-Faster shares a similar framework with Faster R-CNN, 

we owe the gains to the proposed keypoint anchors. In addition, K-Faster outperforms many state-of-

the-art models, including ION [18], SSD512 [23], and YOLOv2 [5]. Our ResNet101-based results are 

comparable to R-FCN [9], which also uses ResNet101 as the backbone network. Although CoupleNet 

[10], CEBNet [26], and MLKP101 [19] show their superiority in mAP, the superiority of MLKP to K-

Faster is insignificant. As for CoupleNet, it uses two branches, i.e., local FCN and global FCN, to 

improve ResNet101-based R-FCN. Compared with R-FCN, which achieves mAP of 80.5%, 

CoupleNet obtains an mAP of 82.7%, as shown in Table 4. The improvement of the mAP is 2.2%, 

which is less than the improvement from Faster101 to K-Faster101. CEBNet embeds six layers into 

SSD detector, including four CEB modules. Every CEB module consists of two sub-networks. 

Compared with SSD512, the improvement of CEBNet512 on the mAP is 5.7%. However, the 

network of CEBNet is much more complicated than SSD.  

Fig. 4 shows some results on the PASCAL VOC 2007 test set. The implementation model is K-

Faster16 (77.2% mAP). A score threshold of 0.6 is used to draw the detection bounding boxes. The 

blue and red colors respectively show the detections launched by Faster and keypoint anchors. Fig. 5 

shows the detection ratios launched by keypoint anchors on the VOC 2007 test set using the model of 

K-Faster16. The detection ratio is a proportion of the number of the objects detected by keypoint 

anchors to the total detections. Both Fig. 4 and Fig. 5 demonstrate that keypoint anchors are helpful 

for object detection. 



16 

 

 

Fig. 4. Detection examples of K-Faster16 on the PASCAL VOC 2007 test set. A score threshold of 0.6 is used to 

draw the detection bounding boxes. The blue and red colors respectively show the detections launched by Faster 

and keypoint anchors. 

 

Fig. 5. Detection ratios launched by keypoint anchors on the PASCAL VOC 2007 test set. 

Because the main task for object detection not only includes classification but also involves 

localization problem, we add an evaluation on localization. In order to investigate the positioning 

precision of the detection, we evaluate the mean IoUs of the true positive detections (IoU 0.5 ). Fig. 

6 shows the positioning precision on the 20 classes of the PASCAL VOC 2007 test set. Fig. 6a and 

Fig. 6b respectively show the mean IoUs that are obtained from the backbone networks of VGG16 

and ResNet101. The results of K-Faster and Faster R-CNN are shown in red and gray, respectively. 

The mean IoUs of K-Faster and Faster R-CNN over the 20 classes in Fig. 6a are 78.2% and 77.8%, 

respectively. The mean IoUs of K-Faster and Faster R-CNN in Fig. 6b are respectively 81.7% and 

81.5%. Both the mean IoUs of K-Faster are greater than those of Faster R-CNN. Overall, our K-Faster 

improves the positioning precision of the detection. 
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Fig. 6. The positioning precision of bounding boxes on the PASCAL VOC 2007 test set. (a) VGG16-based results. 

(b) ResNet101-based results. 

Take Faster R-CNN as a benchmark, we evaluate the runtime of K-Faster using a dual-core i-3 

4160 CPU and an NVIDIA GTX1080 GPU. We summarize the test time (ms per image) of Faster R-

CNN and K-Faster on the PASCAL VOC 2007 test set in Table 5. “Keypoint” and “Proposal” are 

respectively the runtimes in generating keypoints and proposals on CPU. “GPU” is the runtime on 

convolution, pooling, full-connection, and softmax layers. As shown the the total runtime in Table 5, 

K-Faster is slower than Faster R-CNN for a same post

NMSNt . The inferiority is largely due to the time 

cost on Keypoint. It takes K-Faster about 100ms to generate keypoints on CPU. However, K-Faster 

takes advantage in GPU runtime. As shown in Table 5, the runtimes of K-Faster on GPU are 80.6, 

202.0, 136.7, and 386.1 ms. The first three GPU runtimes of K-Faster are less than those of Faster R-

CNN. This is partially due to the improvement of the performance of the proposals. Overall, K-Faster 

is competitive against Faster R-CNN in terms of GPU runtime. 

Table 5. Runtime (ms) comparisons on the PASCAL VOC 2007 test set. 

Model 
post

NMSNt
 

Keypoint Proposal GPU Total Rate (fps) 

Faster [4] 300 - 6.2 90.2 96.4 10.4 

K-Faster16 300 107.4 19.7 80.6 207.7 4.8 

Faster [4] 1200 - 26.2 216.7 242.9 4.1 

K-Faster16 1200 105.0 56.2 202.0 363.2 2.8 

Faster101 [13] 300 - 6.0 156.1 162.1 6.2 

K-Faster101 300 112.5 18.6 136.7 267.8 3.7 

Faster101 [13] 1200 - 28.8 383.8 412.6 2.4 

K-Faster101 1200 117.6 57.0 386.1 560.7 1.8 

As shown in Table 6, we also compare our method with the state-of-the-art methods on the test 

sets of VOC 2012. The K-Faster16 and K-Faster101 are run 260k and 280k training iterations, 

respectively. The learning rate is dropped 10 times after every 100k iterations on the 07++12 dataset. 

Because the labels of the test set of VOC 2012 are not issued, the evaluation results in Table 6 are 

produced from the server of PASCAL VOC. Except for CoupleNet, K-Faster101 achieves the greatest 

mAP of 77.7%. Compared with the standard Faster R-CNN, K-Faster16 improves the mAP of 3.5% 

and K-Faster101 improves the mAP of 3.9%. MLKP, which outperforms K-Faster on the PASCAL 

VOC 2007 test set, is inferior to K-Faster on the PASCAL VOC 2012 test set. Keypoint anchors are 

helpful for object detection on the PASCAL VOC 2012 test set. 
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Table 6. Results on the PASCAL VOC 2012 test set (%). Training data: “07++12”: VOC 2007 trainval + test 

together with VOC 2012 trainval. 

Method mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv 

One-stage detector 

SSD512 [23] 74.9 87.4 82.3 75.8 59.0 52.6 81.7 81.5 90.0 55.4 79.0 59.8 88.4 84.3 84.7 83.3 50.2 78.0 66.3 86.3 72.0 

YOLO2 [5] 73.4 86.3 82.0 74.8 59.2 51.8 79.8 76.5 90.6 52.1 78.2 58.5 89.3 82.5 83.4 81.3 49.1 77.2 62.4 83.8 68.7 

DSOD300 [16] 76.3 89.4 85.3 72.9 62.7 49.5 83.6 80.6 92.1 60.8 77.9 65.6 88.9 85.5 86.8 84.6 51.1 77.7 72.3 86.0 72.2 

Two-stage detector 

Fast [3]  68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5                              80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 

Faster [4]  70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5 

Faster101 [13] 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6 

ION [18] 74.7 86.9 84.5 75.2 58.2 57.7 80.5 78.3 90.4 54.4 79.9 60.5 88.4 83.0 83.0 81.2 50.7 77.3 67.6 83.5 72.3 

R-FCN [9] 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9 

CoupleNet [10] 80.4 89.1 86.7 81.6 71.0 64.4 83.7 83.7 94.0 62.2 84.6 65.6 92.7 89.1 87.3 87.7 64.3 84.1 72.5 88.4 75.3 

DeNet-101 [21] 73.9 - - - - - - - - - - - - - - - - - - - - 

CRFNet [22] 71.8 86.0 81.3 76.1 52.4 53.2 79.7 80.0 90.2 45.3 79.5 52.9 89.6 84.7 85.2 82.2 41.9 71.5 60.6 81.2 63.1 

MLKP16 [19] 75.5 86.4 83.4 78.2 60.5 57.9 80.6 79.5 91.2 56.4 81.0 58.6 91.3 84.4 84.3 83.5 56.5 77.8 67.5 83.9 67.4 

MLKP101 [19] 77.2 87.1 85.1 79.0 64.2 60.3 82.1 80.6 92.3 57.4 81.8 61.6 92.1 86.3 85.3 84.3 59.1 81.7 69.5 85.0 70.1 

K-Faster16 73.9 85.0 81.3 74.6 58.2 56.9 80.9 78.7 90.6 53.5 78.3 58.4 88.0 83.2 84.7 82.7 51.2 76.6 63.5 82.1 68.9 

K-Faster101 77.7 87.8 84.8 80.3 65.7 62.5 81.0 81.3 93.0 59.1 82.3 61.2 91.1 86.2 85.6 85.0 58.9 81.8 68.9 83.8 72.9 

4.3. Results on MS COCO 

In this Section, we present experimental results on the Microsoft COCO object detection dataset. 

COCO involves 80 object classes. The dataset consists of 80k images for training (train2014), 40k 

images for validation (val2014), and 20k images for testing (test-dev2015). We use the train+val 

(trainval) to train our model. We report COCO AP on the test-dev set, which has no public labels and 

requires evaluation from the server of COCO. The COCO standard metric is denoted as AP, which is 

the average precision evaluated at IoU in [0.5: 0.05: 0.95]. AP50 and AP75 are evaluated at IoU=0.50 

and 0.75, respectively. AR1, AR10, and AR100 are the average recall given 1, 10, and 100 detections 

per image, respectively. APs, APm, and APl are AP for small (area322), medium (322<area962), and 

large (area>962) objects, respectively. ARs, ARm, and ARl are the similar notations. The learning rate 

is initialized with 0.001 and is decayed 10 times after every 550k iterations until the iterations reach 

1400k. 

Table 7 shows our results on COCO. The training set trainval35k is the union of 80k train images 

and a random 35k subset of val images. All the results are reported on the test-dev split except for 

Faster-Res101*, which is reported on val split. For a fair comparison, we re-implement ResNet101-

based Faster R-CNN [13] on trainval split. The learning rate is initialized with 0.001 and is reduced 

by a factor of 10 after 600k iterations until the iterations reach 800k [37]. The test results are shown as 

Faster-Res101† in Table 7. Although Table 7 lists results on three different training sets (train, 

trainval, trainval35k), it is reasonable to implement comparison within groups.  

Table 7. Detection results on the test set of COCO (%). *: the results are reported on val split. †: the results are 

reported by the re-implemented model. 

Method Training set AP AP50 AP75 APs APm APl AR1 AR10 AR100 ARs ARm ARl 

One-stage detector 

SSD512 [23] trainval35k 26.8 46.5 27.8 9.0 28.9 41.9 24.8 37.5 39.8 14.0 43.5 59.0 

YOLOv2 [5] trainval35k 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4 

DSOD300 [16] trainval 29.3 47.3 30.6 9.4 31.5 47.0 27.3 40.7 43.0 16.7 47.1 65.0 

CEBNet300 [26] trainval35k 30.5 49.7 - 11.6 32.4 46.2 - - - - - - 

CEBNet512 [26] trainval35k 34.3 54.1 - 16.3 37.5 48.5 - - - - - - 
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Two-stage detector 

Fast [3] train 20.5 39.9 19.4 4.1 20.0 35.8 21.3 29.5 30.1 7.3 32.1 52.0 

Faster [4][19] trainval 21.9 42.7 23.0 6.7 25.2 34.6 22.5 32.7 33.4 10.0 38.1 53.4 

Faster- Res101 [13] * train 27.2 48.4 - - - - - - - - - - 

Faster-Res101 [38] trainval35k 30.3 - - 9.9 32.2 47.4 - - - - - - 

Faster-Res101 [13]† trainval 31.3 49.6 33.8 10.3 35.2 48.2 28.7 40.8 41.5 14.2 47.9 64.6 

ION [18] train 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6 

R-FCN [9] trainval 29.2 51.5 - 10.3 32.4 43.3 - - - - - - 

CoupleNet [10] trainval 33.1 53.5 35.4 11.6 36.3 50.1 29.3 43.8 45.2 18.7 51.4 67.9 

DeNet-101 [21] trainval 31.9 50.5 34.2 9.7 34.9 50.6 28.4 39.8 40.3 13.1 44.8 64.1 

Mask RCNN [12] trainval35k 38.2 60.3 41.7 20.1 41.1 50.2 - - - - - - 

CornerNet [24] trainval35k 40.5 56.5 43.1 19.4 42.7 53.9 35.3 54.3 59.1 37.4 61.9 76.9 

CRFNet [22] train 23.5 44.3 - - - - - - - - - - 

MLKP16 [19] trainval35k 26.9 48.4 26.9 8.6 29.2 41.1 25.6 37.9 38.9 16.0 44.1 59.0 

MLKP101 [19] trainval35k 28.6 52.4 31.6 10.8 33.4 45.1 27.0 40.9 41.4 15.8 47.8 62.2 

K-Faster16 trainval 26.5 48.6 26.3 7.9 28.5 41.1 25.3 37.2 38.2 13.7 43.2 58.8 

K-Faster101 trainval 34.7 53.8 37.7 14.1 37.5 51.0 30.6 43.9 44.7 19.7 49.7 66.0 

As shown in Table 7, K-Faster16 and K-Faster101 respectively achieve the APs of 26.5% and 

34.7% on the trainval set. Both of them outperform corresponding standard Faster R-CNN. 

Corresponding APs are respectively 3.6 and 3.4 points higher than those of Faster R-CNN. Although 

K-Faster101 is inferior to CEBNet512, CoupleNet, and MLKP on the test set of VOC 2007 and VOC 

2012 (Tables 4 and 6), K-Faster101 outperforms them on the test set of COCO (Table 7). It should be 

noted that K-Faster cannot outperform Mask R-CNN and CornerNet on COCO. Mask R-CNN is a 

kind of segmentation method that is designed for pixel-to-pixel alignment using FPN-based 

ResNet101. The advantage of Mask R-CNN on box detection is partially due to the benefits of 

segmentation branch and multi-task training [12]. Because CornerNet integrates many technologies in 

training, it takes advantage in high performance. Besides multi-stream technology is employed to 

design CornerNet, data augmentation techniques and Principal Component Analysis (PCA) are 

applied to the input images. In addition, CornerNet uses an optimized training loss for training. It 

seems that a method integrating several technologies is in favor of a high performance. Although K-

Faster cannot outperform all the listed state-of-the-art methods, Keypoint anchors are helpful for 

object detection for the more challenging COCO dataset. 

5. Conclusions 

In this paper, a local keypoint-based Faster R-CNN is proposed. The 2-combinations of the 

produced keypoints are selected to generate anchors. An area-based technology is designed to encode 

the keypoint anchors with a heterogeneous distribution. The keypoint anchors are coupled with Faster 

anchors to improve object detection. With the coupling anchors, our K-Faster approach not only 

increases the mAP performance but also improves the positioning precision of the detected boxes. In 

the future work, we first plan to improve detection performance using geometry knowledge since 

knowledge, such as global structure and context, may be helpful for detection. Second, we plan to 

improve CNN-based method with the help of intuitionistic fuzzy set. We hope to annotate object 

using membership and non-membership classifications and design dual-network for object detection.  
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