
1

Local Keypoint-based Faster R-CNN

Xintao Ding1,2,* Qingde Li3,*
 Yongqiang Cheng3 Jinbao Wang1,2 Weixin Bian1,2 Biao Jie1,2

1 School of Computer and Information, Anhui Normal University, Wuhu, China
2 Anhui Province Key Laboratory of Network and Information Security, Wuhu, China
3 School of Engineering and Computer Science, University of Hull, Hull, HU67RX, UK
* Corresponding author

Abstract. Region-based Convolutional Neural Network (R-CNN) detectors have achieved state-of-

the-art results on various challenging benchmarks. Although R-CNN has achieved high detection

performance, the research of local information in producing candidates is insufficient. In this paper,

we design a Keypoint-based Faster R-CNN (K-Faster) method for object detection. K-Faster

incorporates local keypoints in Faster R-CNN to improve the detection performance. In detail, a

sparse descriptor, which first detects the points of interest in a given image and then samples a local

patch and describes its invariant features, is first employed to produce keypoints. All 2-combinations

of the produced keypoints are second selected to generate keypoint anchors, which are helpful for

object detection. The heterogeneously distributed anchors are then encoded in feature maps based on

their areas and center coordinates. Finally, the keypoint anchors are coupled with the anchors

produced by Faster R-CNN, and the coupled anchors are used for Region Proposal Network (RPN)

training. Comparison experiments are implemented on PASCAL VOC 07/12 and MS COCO. The

experimental results show that our K-Faster approach not only increases the mean Average Precision

(mAP) performance but also improves the positioning precision of the detected boxes.

Keywords - Keypoint; SIFT; Convolutional Neural Network; Faster R-CNN

1. Introduction

General object detection is a complex problem. One of the main tasks for object detection is the

localization problem, which is used to assign accurate bounding boxes to different objects [1]. In the

last two decades, object detectors based on Convolutional Neural Networks (CNNs) [2-5] have

achieved state-of-the-art results on various challenging benchmarks [6-8]. As two representative

Region-based CNN (R-CNN) methods, both Fast/Faster R-CNN [3, 4] and Region-based Fully

Convolutional Network (R-FCN) [9] use a Region Proposal Network (RPN) to generate region

proposals. RPN initializes anchors of different scales and aspect ratios at each convolutional feature

map location [4]. Although the anchor potentially covers the object of interest, it does not focus on

local information. When a human identifies an object, both global structural information and local

individual information are used in the identification [10].

Our work is motivated by the following two questions. First, is it possible to use local information

to generate region proposals? Second, if the first answer is positive, are the generated proposals

helpful for the performance of object detection? To meet this goal, we employ a keypoint as a kind of

local information and fuse it in RPN in this study.

Fig. 1 shows an example of object detection by combining Faster and keypoint anchors. Faster R-

CNN cannot produce proposals for the bus, partially due to the error between the ground truth and the

initialized anchor box. Although Faster R-CNN uses bounding-box regression to adjust the error from

2

an anchor box to a ground-truth box, the regression may be powerless when the error between them is

too large. By combining the two kinds of anchors, both the bus and car in Fig. 1a can be correctly

detected.

Fig. 1 An example of object detection by combining Faster and keypoint anchors.

In this work, we propose the keypoint-based Faster R-CNN method (K-Faster), which incorporates

local keypoints in Faster R-CNN for object detection. All 2-combinations of the produced keypoints

on an image are selected to generate bounding boxes, which are keypoint anchors (Fig. 1c). Every

keypoint anchor is arranged in a convolutional network based on an Area Ratio of the Anchor to the

Image (ARoAI) and the center coordinates of the anchor. On the one hand, a feature map with a lower

index is designed to encode an anchor with a greater ARoAI, while a feature map with a higher index

is used to encode an anchor with a smaller ARoAI. On the other hand, a grid point in a feature map is

used to encode an anchor if the center coordinates of the anchor are convolved to the grid. The

keypoint anchors together with Faster anchors, which are boxes with fixed scales and aspect ratios [4],

are trained by RPN to produce proposals. Our approach employs the keypoint as a kind of local

information and fuses it with Faster R-CNN for region proposal. The keypoints around the object may

produce a keypoint anchor with a certain aspect ratio or size that cannot be covered by the anchors of

Faster R-CNN. The keypoint anchor is helpful for region proposals, and the coupling anchors make

the model have a more powerful ability. Extensive experiments implemented on PASCAL VOC

07/12 and MS COCO demonstrate that K-Faster can improve the detection performance.

Our main contributions are summarized as follows:

1. We incorporate local keypoints in Faster R-CNN to improve object detection. The designed

keypoint anchors are coupled with Faster anchors to cover the deficiency of Faster R-CNN, which

initializes anchor boxes with preset aspect ratios and sizes.

2. We design an area-based technology to encode anchors with a heterogeneous distribution.

Because the keypoints are attracted to pixels with heterogeneous intensity, the heterogeneously

distributed anchors are partitioned in groups using ARoAI and are encoded in feature maps for RPN

training.

3. Compared with Faster R-CNN, our K-Faster approach not only increases the mean Average

Precision (mAP) performance but also improves the positioning precision of the detected boxes.

3

2. Related work

In recent years, object detection has achieved superior performance with the implementation of

CNN [2-5, 11-13]. Generally, CNN-based object detection methods may be divided into two groups:

(1) region proposal-based two-stage method and (2) the proposal-free one-stage method [14-16].

2.1. Two-stage method

R-CNN [17], Fast R-CNN [3], Faster R-CNN [4], R-FCN [9] and Mask R-CNN [12] are

representative two-stage methods. Although R-CNN can be considered as a milestone of the two-

stage method for object detection, it classifies every region proposal separately and is time-consuming

[14, 16]. Fast R-CNN shares computation between the proposal extraction and classification steps

using ROI-Pooling and therefore improves the efficiency greatly. Faster R-CNN designs RPN to

generate proposals from anchor boxes and achieves further increases in speed and precision. R-FCN

further improves speed and accuracy by removing fully connected layers and adopting position-

sensitive score maps for final detection [9, 16]. Mask R-CNN, which may be used for object instance

segmentation and bounding box detection, extends Faster R-CNN by adding a branch that outputs the

object mask [12].

Recently, many technologies have been designed to improve object detection. In order to combine

multiple convolutional features, the multi-scale technology is employed for improvement [18, 19].

Sean et al. designed an Inside-Outside Net (ION) [18], which concatenated multiple convolutional

features to improve object detection. In [19], a Multi-scale Location-aware Kernel Representation

(MLKP) is proposed to capture high-order statistics of deep features in proposals. Li et al. proposed a

Zoom-out-and-In network for object Proposals (ZIP) and employed a Map Attention Decision (MAD)

unit to search for neuron activations [20].

Since knowledge may be helpful for object detection, some studies focus on knowledge

[10][21][22]. As shown in [10], the authors designed CoupleNet to couple the global structure with

local parts for object detection. As a class of corner-based detector, DeNet evaluates the distribution

of the box corners to refine bounding boxes for improvement [21]. Jiang et al. introduced an object

co-detection method (CRFNet) that exploited contextual information among multiple images through

a higher-order conditional random field [22].

2.2. One-stage method

Alternatively, one-stage detectors, such as You Only Look Once (YOLO) [5], Single Shot

MultiBox Detector (SSD)[23], and CornerNet [24] detect objects in a single network. They are

usually more computationally efficient than two-stage detectors [1][24]. Compared with two-stage

methods, YOLO does not require proposals. YOLO forwards the input image once through a

convolutional network to directly predict object classes and locations, and therefore it is extremely

fast [5]. Combining dense anchor boxes and pyramid features, SSD directly classifies anchor boxes

[23]. CornerNet, which uses an hourglass network as its backbone, detects each object bounding box

as a pair of keypoints [24].

Many one-stage detectors share similarity with SSD. Similar to the frame work of SSD, the

network structure of Deeply Supervised Object Detector (DSOD) is divided into two parts: the

backbone sub-network for feature extraction and the front-end sub-network for prediction over multi-

scale response maps [16]. RetinaNet uses features pyramids occurred in SSD to address the extreme

foreground-background class imbalance during training of dense detectors [25]. By attaching the

4

Context Enhancement Blocks (CEBs) to the shallow layers in SSD, an advanced one-stage detector

CEBNet is proposed in [26].

In this study, we focus on the improvement of Faster R-CNN using local keypoints. Although

DeNet [21] and CornerNet [24] are point-based CNN methods, their flowcharts are complex. As a

two-stage method, DeNet needs to jointly optimize the costs of both stages, i.e., the corner probability

distribution, final classification distribution and bounding box regression cost [21]. The network of

CornerNet may be divided in three modules: an hourglass backbone network and two prediction

streams . In our design, the network modules are similar with Faster R-CNN. The main task of K-

Faster is to couple keypoint anchors with Faster anchors to cover the deficiency of Faster R-CNN,

which initializes anchor boxes with preset aspect ratios and sizes.

3. Proposed method

3.1 Overview of methodology

The main design of our proposed method is to use local information to train candidates. In this

study, we employ keypoint anchors to achieve the design. Fig. 2 shows the main design of our method.

Fig. 2a shows the input image I with a size WH. Fig. 2b shows the produced keypoints. Fig. 2c

shows all the resulting anchor boxes, which total
2

NC , and N is the number of total keypoints. To train

an RPN, a positive or negative anchor with a high or low Intersection over Union (IoU) overlap with a

ground-truth box, called the Anchor of Interest (AoI), should be assigned a positive or negative label.

The bias between the anchor box and ground truth box, which is called the ground bias, should be

calculated to supervise bounding box regression. To arrange the labels and ground biases to 3-

Dimensional (3-D) tensors, which serve as supervision information for the RPN, the anchors in Fig.

2c are partitioned into kS groups based on the ARoAI, as shown in Fig. 2d. All labels of the AoIs in

each group are arranged on a corresponding 2-Dimensional (2-D) feature map, which indicates the

convolution results of one channel [27] (Fig. 2e). For every AoI, its label is mapped to a layer position

based on the coordinates of the anchor center (Fig. 2e). Every ground bias is parameterized by 4

coordinates and therefore is encoded on 4 feature maps in a similar way, as shown in Fig. 2f. Figs. 2g

and 2h are label and ground bias tensors obtained from Faster R-CNN, respectively. Fig. 2i shows

supervision information for RPN, and Figs. 2i1 and 2i2 show coupled tensors. Based on the integrated

supervision information, our method follows a network similar to that of Faster R-CNN.

5

Fig. 2. Flowchart of the construction of the supervision information for RPN. (a) Input image. (b) Local keypoints.

(c) The resulting anchor boxes after enumerating all 2-combinations. (d) Area-based boxes partition. (e) 3-D label

tensor induced by the keypoints. (f) 3-D ground bias tensor induced by keypoints. (g) and (h) are label and bias

tensors of Faster R-CNN, respectively. (i) The supervision information of our method for RPN. (i1) and (i2) show

label and bias tensors for RPN, respectively.

3.2 Keypoint detection

In order to improve the smartness of the region proposal, the keypoint, which involves local

information, is employed to improve the coverage ability of anchors. Generally, the keypoint is

coupled with a descriptor. In this work, a sparse descriptor, which first detects the points of interest in

a given image and then samples a local patch and describes its invariant features [28], is employed to

produce the keypoint.

During the last two decades, a large variety of sparse descriptors have been developed, including

classical Scale-Invariant Feature Transform (SIFT) [29] and Speeded-Up Robust Feature (SURF) [30]

descriptors, binary descriptors [31], and learning-based descriptors [32][33]. Although learning

methods can achieve great accuracy, they usually produce large dimension features and are

computationally expensive [32][33]. In addition, the preparation of substantial data for training is not

a trivial subject. In order to produce as many AoI as possible, a robust keypoint detector that detects

as many corresponding keypoints on the image is needed. Although binary descriptors are usually

proposed in a simple presentation, they may be insufficient for producing massive keypoints based on

experiments in [34]. Although SURF is more efficient for registration types of tasks, it is insufficient

for producing enough keypoints [34]. In this paper, a Global OPtimized SIFT (GOP), which was

demonstrated to produce many more keypoints in [34], is employed for keypoint detection.

3.3 Generating keypoint anchors

All 2-combinations of the produced keypoints are enumerated to generate anchors. Let the number

of keypoints produced by GOP be GN . Because multiple descriptors may be produced at one

6

keypoint [29], the same keypoints are merged into one keypoint. Let the keypoints after merging be

 0 0 0 0 0= (,) 0,1, , , ,K i i i K i iP p x y i N x y= = . For a 2-combination of points
0 0(,)i jp p extracted from

KP , let its corresponding anchor be
0 0 0 0 0(, , ,)ij i i j ja x y x y= , where

0 0 0 0, ,i j i jx x y y

0 0 0 0(,), (,)i i j j Kx y x y P . The anchor
0

ija with small area should be ignored because a proposal with

small area is filtered in the stage of proposal refinement [4]. Let fas desA A A= be the final resulting

anchors, where fasA is the set of anchors produced by Faster R-CNN;

 0 0= () =(, , ,)des ij ij sa ij i i j jA a s a T a x y x y is the set of anchors produced by keypoints, ()s • is the

pixel area of • , and saT is a threshold.

3.4 Encoding keypoint anchors

To generate region proposals, a box-regression layer (reg) and a box-classification layer (cls) are

used to map the coordinates and scores of the proposals in the framework of Faster R-CNN [4]. In this

study, we integrate keypoint and Faster R-CNN anchors to design reg and cls. The label and ground

bias induced by the keypoint should be mapped in 3-D tensors as the supervision information to train

reg and cls.

Let (,) 0,1, , 1; 0,1, , 1RPNfm r c r h c w= = − = − be the 2-D feature map of the last shared

convolutional layer; h and w are respectively the numbers of rows and columns of the map. Let the

labels fed to cls be a 3-D tensor, denoted as

 (, ,) 0,1, , 1; 0,1, , 1; 0,1, , 1cLt l r c l k r h c w= = − = − = − , where c f Sk k k= + , Sk and fk are

respectively the number of maximum possible proposals induced by keypoints and Faster R-CNN at

each point of RPNfm . Lt may be decomposed into two sub-tensors, as shown in (1):

 fas desLt Lt Lt= , (1)

where ()fas fLt Lt l k= is the part of the tensor induced by Faster R-CNN (Fig. 2g) and

()des f cLt Lt k l k= is the part of the tensor induced by the keypoint (Fig. 2e). Furthermore, the 3-D

desLt may be expressed as a set of 2-D feature maps, as shown in (2).

1

0

Sk

t

des des

t

Lt fm
−

=

= , (2)

where
t

desfm is the feature map of the t-th channel.

7

In order to arrange the label and ground bias in 3-D tensors, we partition the set of keypoint

anchors desA into Sk groups, as shown in (3):

1

0

Sk

t

des des

t

A A
−

=

= , (3)

where if
t

ij desa A , then

1

1

(2 ,2], 0,1, , 2
()

() (2 ,), 1S

t t

ST
ij k

ij S

t ks
ARoAI a

s a t k

+

−

 = −
=

+ = −

,

Ts is a threshold that is the base size of the image set.

Combining (2) and (3), we map (, , ,) t

ij i i j j desa x y x y A= to the t-th feature map
t

desfm at position

, (,)
2 2

i j i jc c c

ij ij ij

x x y y
p x y

r r

+ +
=

, where /r H h= is the feature stride from the input image to the

feature map RPNfm .

The ground bias tensor (, ,) 0,1, , 4 1b b cBt l r c l k= = − may be decomposed into two bias

tensors, as shown in (4).

 fas desBt Bt Bt= , (4)

where (4)fas b fBt Bt l k= is the part of tensor induced by Faster R-CNN (Fig. 2h) and

(4 4)des f b cBt Bt k l k= is the part of the tensor induced by the keypoint (Fig. 2f). desBt may be

expressed as (5):

4 1

0

Sk

t

des des

t

Bt fm
−

=

= . (5)

Combining (3) and (5), for any
t

ij desa A , we map its ground biases to
4t

desfm ,
4 +1t

desfm ,
4 +2t

desfm , and

4 +3t

desfm at the position
c

ijp .

For ij fasa A , the mappings of fasLt and fasBt are similar to those in [4]. After the label and

ground biases of all ija are mapped in their corresponding tensors, the 3D tensors Lt and Bt serve as

supervision information to train the RPN.

8

3.5 The encoding steps

In this Section, we present encoding steps of our proposed method. Table 1 shows the input variables

and comments used in this Section. KP and Sk are two key parameters of our method. fk is the

parameter for anchors of Faster R-CNN. gtb , w, and h are parameters produced by input image. The

other four variables are thresholds for RPN training.

Table 1 Variables used in our method.

Variable Comment

KP A set with KN keypoints

Sk

The number of channels of the label tensor induced by keypoints

fk The number of channels of the label tensor induced by Faster R-CNN

gtb The array of ground truth boxes with the size of 4 gtN

w The number of columns of the last shared convolutional tensor

h The number of rows of the last shared convolutional tensor

_RPN poT The IoU threshold for positive anchors

_RPN noT The IoU threshold for negative anchors

_RPN bsT The threshold of the number of anchors for RPN training

_RPN fgr The ratio of the anchors that are labeled as foreground

For convenience, Fig. 3 shows the illustration of our mapping. Let the Faster anchors of be an

array
4afN

fasA

 , the keypoint anchors be an array
 4adN

desA

 . Then

() 4af ad

fas

des N N

A
A

A
+

=

 (6)

is the array of all the anchors, which is coupled vertically by fasA and desA (Fig. 3a). Let

() 4af ad

fas

des n N

A
A

A
+

 =

, (7)

which is resulted from A after removing the anchors that are not inside the image (Fig. 3b). Let a

query list between A and A be qA , where the k-th anchor in A corresponds to the kqA -th anchor in

A (Figs. 3a and 3b). The labels of A are initialized to [] (1, , 1) af adn N

fas deslA lA lA
+

 = = − − , where

afn

faslA adN

deslA .

Let
1 fwhk

fasLt and 1 Swhk

desLt be 1-Dimensional (1-D) label tensors, which are respectively

reshaped from 3-D tensors fasLt and desLt in the dimension order of channel, width, and height, as

shown the red arrowed line in Fig. 3d. Then the 1-D label tensor of Lt is

9

()1 1 1[] f Swh k k

fas desLt Lt Lt
+

= , which is initialized to
1 (1, , 1)Lt = − − . In order to map the anchors in

the list of desA to the 1-D tensor
1

desLt introduced in Section 3.4, a query list

 (),()i j ij ij ijlq ind a row col cha= + + (8)

is designed to map the ,()i jind a -th anchor in desA to the (),()i jlq ind a -th label in the 1-D tensor
1

desLt ,

where ,()i jind a is the index of ,i ja in desA ;
c

ij S ijrow wk y= ;
c

ij S ijcol k x= ;

1arg () (2 ,2]t t

ij i j
t

cha ARoAI a + =
.

Figs. 3c-3e illustrate the mapping from the list of keypoint anchors to the label tensors. Take the 0-

th keypoint anchor 01a (Fig. 3c) for example, its label is arranged in the 3-D tensor desLt at

()01 01, ,c cx y t , as shown the yellow square in Fig. 3d, where ()01 01 01,c c cx y p= corresponds to the center

coordinate of 01a , t is obtained by ARoAI. After fetching the elements along with the red arrowed line

in Fig. 3d, the 3-D tensor desLt (Fig. 3d) is reshaped to 1-D tensor
1

desLt (Fig. 3e). The label of the 0-

th keypoint anchor (the blue item in Fig. 3c) is arranged to
1

desLt at () 01 010 c c

S Slq wk y k x t= + + (the

yellow item in Fig. 3e).

Fig. 3. Illustration of the mapping from anchor to tensor. (a) Array of all the anchors A. (b) Array of all the anchors

inside image A . (c) The list of keypoint anchors. (d) 3-D label tensor desLt . (e) 1-D label tensor
1

desLt .

Let the overlapping array generated by the anchors and the ground truth boxes be

()
()af ad gt

ij n N N
O o

+
= , where ijo is the overlap between the i-th anchor of A and the j-th ground truth

box in gtb . Let the row maximums of O be a vector max
af adn N

r
+

 , i.,e., the k-th element kr of maxr is

10

the maximum of the k-th row in O ; Let the anchor indexes of the column maximums of O be the

vector max
gtN

c , i.e., the k-th element kc of maxc is the index of the maximum of the k-th column in

O . Then, the indexes of the anchors with positive label in A for RPN training can be obtained as

follows:

(1.1) Let 1ilA = if _i RPN por T or ki c= . Obtain all the indexes of the anchors with the positive

label 1, i.e.,
 1 2(1)=(, ,)ind lA i i = ;

(1.2) Let
_ _ _RPN fg RPN fg RPN bsT r T = . Randomly choose

_RPN fgT elements in (1)ind lA = if the

number of the assigned positive label in (1.1) is greater than
_RPN fgT . Let

_
(1)

RPN fgTpa ind lA = be

the set of selection;

(1.3) The index vector of the anchors with positive label in A for RPN training is

[]fas despa pa pa , where
_RPN fgTpa pa= if (1.2) is executed, otherwise (1)pa ind lA= = .

The indexes of the anchors with negative label in A for RPN training are obtained as follows:

(2.1) Let 0ilA = if
_i RPN nor T . Obtain all the indexes of the anchors with the negative label 0, i.e.,

1 2(0)=(, ,)ind lA i i = ;

(2.2) Let _ _RPN bg RPN bsT T np= − . Randomly choose
_RPN bgT elements in (0)ind lA = if the number

of the assigned negative label is greater than
_RPN bgT . Let

_
(0)

RPN bgTna ind lA = be the set of

selection;

(2.3) The index vector of the anchors with negative label in A for RPN training is
_RPN bgTna na= if

(2.2) is executed, otherwise (0)na ind lA= = .

Based on ()faspa i and ()fasna i , i.e., the positive and negative indexes of fasA in Fig. 3b, the 1-D label

tensor
1

fasLt is obtained using query list qA :

(3.1) For every ()faspa i , let the (())fasqA pa i -th label in
1

fasLt be 1, i.e., ()1 (()) 1fas fasLt qA pa i = ;

(3.2) For every ()fasna i , ()1 (()) 0fas fasLt qA na i = .

Based on ()despa i and ()desna i , i.e., the positive and negative indexes of desA in A (Fig. 3b), the 1-D

label tensor 1

desLt is obtained using query list lq :

11

(4.1) For every ()despa i , the label of the ()des afpa i n− -th anchor in desA is 1. Therefore, let the

()()des aflq pa i n− -th label in 1

desLt be 1, i.e., ()()1 () 1des des afLt lq pa i n− = ;

(4.2) For every ()desna i , ()()1 () 0des des afLt lq na i n− = .

For the 2-D array of ground bias
() 42 f Swh k k

Bt
+

 , it is initialized to 2 0Bt = . In order to evaluate

the loss of the bounding box regression, the regressions of the anchors with positive and negative

labels are weighted. Let
() 42 2 0 f Swh k k

in outW W
+

= = be the initialization of the positive and negative

weights. All the four regressions of the i-th row in 2

inW are assigned with weight 1 if the i-th label of

1Lt is 1. And the rows of 2

outW corresponding to negative anchors with the label 0 are assigned with

weight
11 Card(0)posT Lt= , Card()• is the cardinality of • .

The encoding steps of the supervision information for RPN training are as follows. Lt , Bt , inW ,

and outW are outputs, where Lt and Bt are label and ground bias tensors, respectively; inW and outW

are weight tensors used to evaluate the loss of the bounding box regression.

Step 1: Generate the array of Faster anchors fasA .

Step 2: Generate the keypoint anchors desA based on Section 3.3.

Step 3: Result in A and A based on (6) and (7), respectively.

Step 4: Build a query list qA between A and A .

Step 5: Build a query list (),()i jlq ind a from the anchors in desA to the labels in the 1-D tensor
1

desLt

based on (8).

Step 6: Assign the overlapping array O , and result in
maxr and maxc .

Step 7: Obtain the indexes of the anchors with positive and negative labels in A for RPN training

based on (1.1)-(1.3) and (2.1)-(2.3), respectively.

Step 8: Assign anchor labels to
1

fasLt and 1

desLt based on (3.1)-(3.2) and (4.1)-(4.2), respectively.

Step 9: Reshape
1

fasLt and 1

desLt to 3-D tensors fasLt and desLt respectively in the dimension order of

channel, width, and height. Couple the two tensors to Lt, as shown in (1).

Step 10: Compute the ground bias of all the anchors in A , and assign them to 2Bt using query lists

qA and lq .

12

Step 11: Obtain 2

inW and 2

outW .

Step 12: Separate 2Bt , 2

inW , and 2

outW vertically into two parts that are respectively in size of

4fwhk and 4Swhk . Reshape and couple them to 3-D tensors Bt , inW , and outW similar

to Step 9.

4. Experiments

We evaluate our method on three datasets: PASCAL VOC 2007 [8], PASCAL VOC 2012 [8], and

MS COCO [6]. Our experiments are implemented based on the framework of Faster R-CNN [4]. Both

VGG16 [11] and ResNet101 [13] are employed as our backbone networks. The VGG16-based and

ResNet101-based experiments are carried out respectively on Caffe [35] and TensorFlow [36]. We

train and test networks on images of a single scale in which the shorter side is s=600 pixels [4]. The

publicly available VGG16 and ResNet101 models pre-trained on ImageNet [2, 7] are used for

corresponding initialization. We use a 1-GPU implementation, and thus the mini-batch size of RPN is

1. The models are trained starting from conv3_1 using an end-to-end schedule. The momentums are

set as 0.9. The weight decay of K-Faster based on VGG16 is set to 0.0005 and that of K-Faster based

on ResNet101 is set to 0.0001. The mAP is primarily used to evaluate the detection performance.

4.1. Implementation detail

We tune the parameters on PASCAL VOC. The models are trained on the union set of VOC 2007

trainval and VOC 2012 trainval (“07+12”). They are evaluated on VOC 2007 test set. We initialize a

learning rate of 0.001 and make the learning rate drop 10 times after every 50k iterations on the 07+12

dataset. A total of 140k training iterations are run.

In addition to thresholds saT and Ts , two main parameters NG and Sk are introduced in this work.

NG and Sk are the number of keypoints and the number of the channels of the keypoint-based label

tensor, respectively. In our design, saT is set to 16 to filter out small keypoint anchors, and Ts is set to

6001000, which is the multiplication of the lower boundary and upper boundary of the input image

size. For Sk , it is appropriate to let it be 16 when Ts = 6001000 because the anchors with the size

less than 1616 are convoluted to 1 point in the last shared convolutional layer. In detail, the anchors

with the size less than 6001000/21518.3 are mapped to the 1 15Sk − = -th feature map. In addition,

because the tensor induced by the keypoint anchors is coupled with the tensor induced by Faster

anchors for RPN training, corresponding parameters of K-Faster may be different from those of Faster

R-CNN. The corresponding parameters are the number of anchors chosen for RPN training in an

image (
RPN

BSN), the number of regions of interest in an image for classification (RoIN), the number of

top scoring boxes to keep before applying Non-Maximum Suppression (NMS) to RPN proposals

13

(
pre

NMSN), and the number of top scoring boxes to keep after applying NMS to RPN proposals (
post

NMSN).

Above all, NG,
RPN

BSN , RoIN ,
pre

NMSN , and post

NMSN are the five parameters that we tune in this work.

4.1.1. The parameter NG

We run VGG16-based experiments to evaluate NG using the encoding steps introduced in Section

3.5. We first train seven different models on seven levels of NG with 448RPN

BSN = , 128RoIN = ,

18kpre

NMSN = , and 2kpost

NMSN = . Every model is then tested with seven groups of parameters (
pre

NMSNt ,

post

NMSNt), where
pre

NMSNt and post

NMSNt are respectively the number of top-scored RPN proposals before and

after applying NMS in the stage of detection. The seven groups of (
pre

NMSNt , post

NMSNt) are (6k, 300), (9k,

300), (9k, 450), (12k, 600), (15k, 750), (18k, 750), and (18k, 900). Table 2 summarizes the key results

on the seven models. The test results with the greatest mAP are listed in the line of mAP in Table 2.

The lines of Rec, Pre,
pre

NMSNt , and post

NMSNt in Table 2 are respectively the recalls, precisions, and

testing parameters that correspond to the greatest mAP. Together with ground truth, the true positive

and false positive samples are used to calculate the recall and precision on every class. A predicted

detection is regarded as a true positive if the predicted class label is the same as the ground truth label

and the IoU between the predicted bounding box and the ground truth one is greater than 0.5,

otherwise the detection is a false positive one. The results of Rec and Pre listed in Table 2 are the

averages of the recalls and precisions over all the classes.

Table 2. Experiments of GN on the PASCAL VOC 2007 test set.

NG 120 160 200 300 400 500 600

mAP(%) 75.8 76.2 76.2 76.1 76.2 75.8 76.1

Rec(%) 88.4 88.3 88.0 88.1 87.2 86.0 86.1

Pre(%) 19.9 22.7 21.9 23.6 26.9 29.7 30.0

pre

NMSNt 18k 18k 12k 15k 15k 15k 18k

post

NMSNt 900 900 600 750 750 750 900

NG=400 is chosen for our proposed method. The recall rate ranges roughly from 88.4% to 86.1%.

Simultaneously, the precision ranges from 19.9% to 30.0%. It can be seen that a greater NG takes

advantage in precision, but a greater NG results in a smaller recall rate. Although NG=160, 200, and

400 are all able to obtain a similar greatest mAP 76.2%, NG = 400 brings a greatest precision (Table 2).

Therefore, NG with a value of 400 is chosen for K-Faster.

4.1.2. RPN parameters

In this Section, we implement experiments on 07+12 using VGG16-based network to tune
RPN

BSN ,

RoIN ,
pre

NMSN , and post

NMSN . For NG = 400, the number of the induced keypoint anchors ranges roughly

14

from 40k to 60k. The number of the keypoint anchors with IoU 0.7 ranges from zero to several

hundreds. We tune the four parameters of K-Faster in the range of one to two times of those used in

Faster R-CNN. For simplicity, the parameters
pre

NMSNt and post

NMSNt used for NMS in the stage of

detection are set to 9k and 300, respectively. Table 3 shows our main experimental results.

Table 3. Experiments of RPN parameters on the PASCAL VOC 2007 test set.

RPN

BSN RoIN
pre

NMSN
post

NMSN Rec(%) Pre(%) mAP(%)

448 256 24k 4k 85.7 30.8 76.3

512 256 24k 4k 85.3 30.7 75.3

448 196 24k 4k 85.7 30.4 76.1

448 256 18k 4k 85.4 33.7 75.7

448 256 24k 2k 85.4 31.3 75.6

As shown in the first and second lines in Table 3, the experimental levels of RPN

BSN are different but

the other three parameters are the same. Both the recall and precision obtained by =448RPN

BSN are

greater than those obtained by =512RPN

BSN , therefore, 448RPN

BSN = takes advantage in mAP. The one-

factor-at-a-time experiments on RoIN are listed in the first and third lines in Table 3. It can be seen

that 256RoIN = is more appropriate than 196. Similarly, pre

NMSN =24k and post

NMSN =4k take advantage in

mAP.

Extended experiments on the same four parameters based on ResNet101 show similar results. This

is partially due to the same structure of their RPN. Overall, the RPN parameters RPN

BSN , RoIN , pre

NMSN ,

and post

NMSN are respectively tuned to be 448, 256, 24k, and 4k for K-Faster.

4.2. Results on PASCAL VOC

In this Section, we demonstrate that local information is helpful in terms of object detection. We

evaluate K-Faster on the PASCAL VOC 2007 detection benchmark [8] together with VOC 2012. For

the experiments on the set of PASCAL VOC 2007 test, the 07+12 dataset is used for training. For the

PASCAL VOC 2012 test set, we use the 10k trainval+test images in VOC 2007 and 16k trainval

images in VOC 2012 for training (“07++12”).

We initialize a learning rate of 0.001, and make the learning rate drop 10 times after every 80k

iterations on the 07+12 dataset. The networks based on VGG16 and ResNet101 are respectively run

180k and 200k training iterations. Table 4 shows our experimental results on the test set of VOC 2007.

The rows of K-Faster16 and K-Faster101 show the results of our method using VGG16 and

ResNet101 as the backbone networks, respectively. The notation “-” shows that corresponding result

is unavailable.

15

Table 4. Results on the PASCAL VOC 2007 test set (%). Training data: “07+12”: VOC 2007 trainval together with

VOC 2012 trainval.

Method mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

One-stage detector

SSD512 [22] 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 72.0 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3

YOLOv2 [5] 78.6 -

DSOD300 [16] 77.7 -

CEBNet300 [26] 80.8 -

CEBNet512 [26] 82.5 -

Two-stage detector

Fast [3] 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

Faster [4] 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

Faster101 [13] 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

ION [18] 74.6 78.2 79.1 76.8 61.5 54.7 81.9 84.3 88.3 53.1 78.3 71.6 85.9 84.8 81.6 74.3 45.6 75.3 72.1 82.6 81.4

R-FCN [9] 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9

CoupleNe t[10] 82.7 85.7 87.0 84.8 75.5 73.3 88.8 89.2 89.6 69.8 87.5 76.1 88.9 89.0 87.2 86.2 59.1 83.6 83.4 87.6 80.7

DeNet101 [21] 77.0 -

CRFNet [22] 72.2 72.6 82.3 73.0 56.7 54.9 79.4 84.6 83.2 54.3 77.5 66.8 81.3 83.4 78.2 79.5 42.7 69.6 71.1 81.8 71.0

MLKP16 [19] 78.1 78.7 83.1 78.8 71.3 64.4 86.1 88.0 87.8 64.6 83.2 73.6 85.7 86.4 81.9 79.3 53.1 77.2 76.7 85.0 76.1

MLKP101 [19] 80.6 82.2 83.2 79.5 72.9 70.5 87.1 88.2 88.8 68.3 86.3 74.5 88.8 88.7 82.0 81.6 56.3 84.2 83.3 85.3 79.7

ZIP MAD [20] 76.8 74.1 80.1 76.0 65.7 55.4 83.5 85.3 87.5 54.2 87.3 68.6 87.4 85.2 77.2 77.7 40.9 77.8 77.5 84.6 70.3

K-Faster16 77.2 75.9 84.0 77.4 65.5 62.7 86.4 87.5 89.0 61.0 84.5 71.3 86.2 87.1 78.7 79.0 51.8 77.8 75.6 83.1 76.3

K-Faster101 80.5 80.3 87.0 79.3 74.5 68.8 88.9 88.5 88.9 66.9 86.9 75.2 88.5 87.6 84.7 80.0 53.7 83.7 80.3 85.1 80.8

Keypoint anchors provide an extra auxiliary discrimination. As shown in Table 4, our K-Faster16

and K-Faster101 achieve mAPs of 77.2% and 80.5% on the PASCAL VOC 2007 test set,

respectively. Compared with the baseline Faster R-CNN, corresponding improvements of the mAPs

are respectively 4.0% and 4.1%. Because K-Faster shares a similar framework with Faster R-CNN,

we owe the gains to the proposed keypoint anchors. In addition, K-Faster outperforms many state-of-

the-art models, including ION [18], SSD512 [23], and YOLOv2 [5]. Our ResNet101-based results are

comparable to R-FCN [9], which also uses ResNet101 as the backbone network. Although CoupleNet

[10], CEBNet [26], and MLKP101 [19] show their superiority in mAP, the superiority of MLKP to K-

Faster is insignificant. As for CoupleNet, it uses two branches, i.e., local FCN and global FCN, to

improve ResNet101-based R-FCN. Compared with R-FCN, which achieves mAP of 80.5%,

CoupleNet obtains an mAP of 82.7%, as shown in Table 4. The improvement of the mAP is 2.2%,

which is less than the improvement from Faster101 to K-Faster101. CEBNet embeds six layers into

SSD detector, including four CEB modules. Every CEB module consists of two sub-networks.

Compared with SSD512, the improvement of CEBNet512 on the mAP is 5.7%. However, the

network of CEBNet is much more complicated than SSD.

Fig. 4 shows some results on the PASCAL VOC 2007 test set. The implementation model is K-

Faster16 (77.2% mAP). A score threshold of 0.6 is used to draw the detection bounding boxes. The

blue and red colors respectively show the detections launched by Faster and keypoint anchors. Fig. 5

shows the detection ratios launched by keypoint anchors on the VOC 2007 test set using the model of

K-Faster16. The detection ratio is a proportion of the number of the objects detected by keypoint

anchors to the total detections. Both Fig. 4 and Fig. 5 demonstrate that keypoint anchors are helpful

for object detection.

16

Fig. 4. Detection examples of K-Faster16 on the PASCAL VOC 2007 test set. A score threshold of 0.6 is used to

draw the detection bounding boxes. The blue and red colors respectively show the detections launched by Faster

and keypoint anchors.

Fig. 5. Detection ratios launched by keypoint anchors on the PASCAL VOC 2007 test set.

Because the main task for object detection not only includes classification but also involves

localization problem, we add an evaluation on localization. In order to investigate the positioning

precision of the detection, we evaluate the mean IoUs of the true positive detections (IoU 0.5). Fig.

6 shows the positioning precision on the 20 classes of the PASCAL VOC 2007 test set. Fig. 6a and

Fig. 6b respectively show the mean IoUs that are obtained from the backbone networks of VGG16

and ResNet101. The results of K-Faster and Faster R-CNN are shown in red and gray, respectively.

The mean IoUs of K-Faster and Faster R-CNN over the 20 classes in Fig. 6a are 78.2% and 77.8%,

respectively. The mean IoUs of K-Faster and Faster R-CNN in Fig. 6b are respectively 81.7% and

81.5%. Both the mean IoUs of K-Faster are greater than those of Faster R-CNN. Overall, our K-Faster

improves the positioning precision of the detection.

17

Fig. 6. The positioning precision of bounding boxes on the PASCAL VOC 2007 test set. (a) VGG16-based results.

(b) ResNet101-based results.

Take Faster R-CNN as a benchmark, we evaluate the runtime of K-Faster using a dual-core i-3

4160 CPU and an NVIDIA GTX1080 GPU. We summarize the test time (ms per image) of Faster R-

CNN and K-Faster on the PASCAL VOC 2007 test set in Table 5. “Keypoint” and “Proposal” are

respectively the runtimes in generating keypoints and proposals on CPU. “GPU” is the runtime on

convolution, pooling, full-connection, and softmax layers. As shown the the total runtime in Table 5,

K-Faster is slower than Faster R-CNN for a same post

NMSNt . The inferiority is largely due to the time

cost on Keypoint. It takes K-Faster about 100ms to generate keypoints on CPU. However, K-Faster

takes advantage in GPU runtime. As shown in Table 5, the runtimes of K-Faster on GPU are 80.6,

202.0, 136.7, and 386.1 ms. The first three GPU runtimes of K-Faster are less than those of Faster R-

CNN. This is partially due to the improvement of the performance of the proposals. Overall, K-Faster

is competitive against Faster R-CNN in terms of GPU runtime.

Table 5. Runtime (ms) comparisons on the PASCAL VOC 2007 test set.

Model
post

NMSNt

Keypoint Proposal GPU Total Rate (fps)

Faster [4] 300 - 6.2 90.2 96.4 10.4

K-Faster16 300 107.4 19.7 80.6 207.7 4.8

Faster [4] 1200 - 26.2 216.7 242.9 4.1

K-Faster16 1200 105.0 56.2 202.0 363.2 2.8

Faster101 [13] 300 - 6.0 156.1 162.1 6.2

K-Faster101 300 112.5 18.6 136.7 267.8 3.7

Faster101 [13] 1200 - 28.8 383.8 412.6 2.4

K-Faster101 1200 117.6 57.0 386.1 560.7 1.8

As shown in Table 6, we also compare our method with the state-of-the-art methods on the test

sets of VOC 2012. The K-Faster16 and K-Faster101 are run 260k and 280k training iterations,

respectively. The learning rate is dropped 10 times after every 100k iterations on the 07++12 dataset.

Because the labels of the test set of VOC 2012 are not issued, the evaluation results in Table 6 are

produced from the server of PASCAL VOC. Except for CoupleNet, K-Faster101 achieves the greatest

mAP of 77.7%. Compared with the standard Faster R-CNN, K-Faster16 improves the mAP of 3.5%

and K-Faster101 improves the mAP of 3.9%. MLKP, which outperforms K-Faster on the PASCAL

VOC 2007 test set, is inferior to K-Faster on the PASCAL VOC 2012 test set. Keypoint anchors are

helpful for object detection on the PASCAL VOC 2012 test set.

18

Table 6. Results on the PASCAL VOC 2012 test set (%). Training data: “07++12”: VOC 2007 trainval + test

together with VOC 2012 trainval.

Method mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

One-stage detector

SSD512 [23] 74.9 87.4 82.3 75.8 59.0 52.6 81.7 81.5 90.0 55.4 79.0 59.8 88.4 84.3 84.7 83.3 50.2 78.0 66.3 86.3 72.0

YOLO2 [5] 73.4 86.3 82.0 74.8 59.2 51.8 79.8 76.5 90.6 52.1 78.2 58.5 89.3 82.5 83.4 81.3 49.1 77.2 62.4 83.8 68.7

DSOD300 [16] 76.3 89.4 85.3 72.9 62.7 49.5 83.6 80.6 92.1 60.8 77.9 65.6 88.9 85.5 86.8 84.6 51.1 77.7 72.3 86.0 72.2

Two-stage detector

Fast [3] 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

Faster [4] 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

Faster101 [13] 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6

ION [18] 74.7 86.9 84.5 75.2 58.2 57.7 80.5 78.3 90.4 54.4 79.9 60.5 88.4 83.0 83.0 81.2 50.7 77.3 67.6 83.5 72.3

R-FCN [9] 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9

CoupleNet [10] 80.4 89.1 86.7 81.6 71.0 64.4 83.7 83.7 94.0 62.2 84.6 65.6 92.7 89.1 87.3 87.7 64.3 84.1 72.5 88.4 75.3

DeNet-101 [21] 73.9 -

CRFNet [22] 71.8 86.0 81.3 76.1 52.4 53.2 79.7 80.0 90.2 45.3 79.5 52.9 89.6 84.7 85.2 82.2 41.9 71.5 60.6 81.2 63.1

MLKP16 [19] 75.5 86.4 83.4 78.2 60.5 57.9 80.6 79.5 91.2 56.4 81.0 58.6 91.3 84.4 84.3 83.5 56.5 77.8 67.5 83.9 67.4

MLKP101 [19] 77.2 87.1 85.1 79.0 64.2 60.3 82.1 80.6 92.3 57.4 81.8 61.6 92.1 86.3 85.3 84.3 59.1 81.7 69.5 85.0 70.1

K-Faster16 73.9 85.0 81.3 74.6 58.2 56.9 80.9 78.7 90.6 53.5 78.3 58.4 88.0 83.2 84.7 82.7 51.2 76.6 63.5 82.1 68.9

K-Faster101 77.7 87.8 84.8 80.3 65.7 62.5 81.0 81.3 93.0 59.1 82.3 61.2 91.1 86.2 85.6 85.0 58.9 81.8 68.9 83.8 72.9

4.3. Results on MS COCO

In this Section, we present experimental results on the Microsoft COCO object detection dataset.

COCO involves 80 object classes. The dataset consists of 80k images for training (train2014), 40k

images for validation (val2014), and 20k images for testing (test-dev2015). We use the train+val

(trainval) to train our model. We report COCO AP on the test-dev set, which has no public labels and

requires evaluation from the server of COCO. The COCO standard metric is denoted as AP, which is

the average precision evaluated at IoU in [0.5: 0.05: 0.95]. AP50 and AP75 are evaluated at IoU=0.50

and 0.75, respectively. AR1, AR10, and AR100 are the average recall given 1, 10, and 100 detections

per image, respectively. APs, APm, and APl are AP for small (area322), medium (322<area962), and

large (area>962) objects, respectively. ARs, ARm, and ARl are the similar notations. The learning rate

is initialized with 0.001 and is decayed 10 times after every 550k iterations until the iterations reach

1400k.

Table 7 shows our results on COCO. The training set trainval35k is the union of 80k train images

and a random 35k subset of val images. All the results are reported on the test-dev split except for

Faster-Res101*, which is reported on val split. For a fair comparison, we re-implement ResNet101-

based Faster R-CNN [13] on trainval split. The learning rate is initialized with 0.001 and is reduced

by a factor of 10 after 600k iterations until the iterations reach 800k [37]. The test results are shown as

Faster-Res101† in Table 7. Although Table 7 lists results on three different training sets (train,

trainval, trainval35k), it is reasonable to implement comparison within groups.

Table 7. Detection results on the test set of COCO (%). *: the results are reported on val split. †: the results are

reported by the re-implemented model.

Method Training set AP AP50 AP75 APs APm APl AR1 AR10 AR100 ARs ARm ARl

One-stage detector

SSD512 [23] trainval35k 26.8 46.5 27.8 9.0 28.9 41.9 24.8 37.5 39.8 14.0 43.5 59.0

YOLOv2 [5] trainval35k 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4

DSOD300 [16] trainval 29.3 47.3 30.6 9.4 31.5 47.0 27.3 40.7 43.0 16.7 47.1 65.0

CEBNet300 [26] trainval35k 30.5 49.7 - 11.6 32.4 46.2 - - - - - -

CEBNet512 [26] trainval35k 34.3 54.1 - 16.3 37.5 48.5 - - - - - -

19

Two-stage detector

Fast [3] train 20.5 39.9 19.4 4.1 20.0 35.8 21.3 29.5 30.1 7.3 32.1 52.0

Faster [4][19] trainval 21.9 42.7 23.0 6.7 25.2 34.6 22.5 32.7 33.4 10.0 38.1 53.4

Faster- Res101 [13] * train 27.2 48.4 - - - - - - - - - -

Faster-Res101 [38] trainval35k 30.3 - - 9.9 32.2 47.4 - - - - - -

Faster-Res101 [13]† trainval 31.3 49.6 33.8 10.3 35.2 48.2 28.7 40.8 41.5 14.2 47.9 64.6

ION [18] train 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6

R-FCN [9] trainval 29.2 51.5 - 10.3 32.4 43.3 - - - - - -

CoupleNet [10] trainval 33.1 53.5 35.4 11.6 36.3 50.1 29.3 43.8 45.2 18.7 51.4 67.9

DeNet-101 [21] trainval 31.9 50.5 34.2 9.7 34.9 50.6 28.4 39.8 40.3 13.1 44.8 64.1

Mask RCNN [12] trainval35k 38.2 60.3 41.7 20.1 41.1 50.2 - - - - - -

CornerNet [24] trainval35k 40.5 56.5 43.1 19.4 42.7 53.9 35.3 54.3 59.1 37.4 61.9 76.9

CRFNet [22] train 23.5 44.3 - - - - - - - - - -

MLKP16 [19] trainval35k 26.9 48.4 26.9 8.6 29.2 41.1 25.6 37.9 38.9 16.0 44.1 59.0

MLKP101 [19] trainval35k 28.6 52.4 31.6 10.8 33.4 45.1 27.0 40.9 41.4 15.8 47.8 62.2

K-Faster16 trainval 26.5 48.6 26.3 7.9 28.5 41.1 25.3 37.2 38.2 13.7 43.2 58.8

K-Faster101 trainval 34.7 53.8 37.7 14.1 37.5 51.0 30.6 43.9 44.7 19.7 49.7 66.0

As shown in Table 7, K-Faster16 and K-Faster101 respectively achieve the APs of 26.5% and

34.7% on the trainval set. Both of them outperform corresponding standard Faster R-CNN.

Corresponding APs are respectively 3.6 and 3.4 points higher than those of Faster R-CNN. Although

K-Faster101 is inferior to CEBNet512, CoupleNet, and MLKP on the test set of VOC 2007 and VOC

2012 (Tables 4 and 6), K-Faster101 outperforms them on the test set of COCO (Table 7). It should be

noted that K-Faster cannot outperform Mask R-CNN and CornerNet on COCO. Mask R-CNN is a

kind of segmentation method that is designed for pixel-to-pixel alignment using FPN-based

ResNet101. The advantage of Mask R-CNN on box detection is partially due to the benefits of

segmentation branch and multi-task training [12]. Because CornerNet integrates many technologies in

training, it takes advantage in high performance. Besides multi-stream technology is employed to

design CornerNet, data augmentation techniques and Principal Component Analysis (PCA) are

applied to the input images. In addition, CornerNet uses an optimized training loss for training. It

seems that a method integrating several technologies is in favor of a high performance. Although K-

Faster cannot outperform all the listed state-of-the-art methods, Keypoint anchors are helpful for

object detection for the more challenging COCO dataset.

5. Conclusions

In this paper, a local keypoint-based Faster R-CNN is proposed. The 2-combinations of the

produced keypoints are selected to generate anchors. An area-based technology is designed to encode

the keypoint anchors with a heterogeneous distribution. The keypoint anchors are coupled with Faster

anchors to improve object detection. With the coupling anchors, our K-Faster approach not only

increases the mAP performance but also improves the positioning precision of the detected boxes. In

the future work, we first plan to improve detection performance using geometry knowledge since

knowledge, such as global structure and context, may be helpful for detection. Second, we plan to

improve CNN-based method with the help of intuitionistic fuzzy set. We hope to annotate object

using membership and non-membership classifications and design dual-network for object detection.

Acknowledgment

This work was supported by the Anhui Provincial Natural Science Foundation (1808085MF171,

1708085MF145), the National Natural Science Foundation of China (61672039, 61573023,

61602009), and the University of Hull 'Evolving a Plastics Circular Economy' project funded by the

EPSRC (EP/S025 537/1).

References

20

[1] Cai Z, Vasconcelos N (2018) Cascade R-CNN: Delving into high quality object detection. In: Proceedings of the

IEEE conference on computer vision and pattern recognition, pp 6154–6162

[2] Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks.

Commun ACM 60(6):84–90

[3] Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 1440–

1448

[4] Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: Towards real-time object detection with region proposal

networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

[5] Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 7263–7271

[6] Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO:

Common objects in context. In: Proceedings of the European conference on computer vision, pp 740–755

[7] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al.

(2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

[8] Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A (2015) The pascal visual object

classes challenge: A retrospective. Int J Comput Vis 111(1):98–136

[9] Dai J, Li Y, He K, Sun J (2016) R-FCN: Object detection via region-based fully convolutional networks. In:

Advances in neural information processing systems, pp 379–387

[10] Zhu Y, Zhao C, Wang J, Zhao X, Wu Y, Lu H (2017) CoupleNet: Coupling global structure with local parts for

object detection. In: Proceedings of the IEEE international conference on computer vision, pp 4126–4134

[11] Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In:

International conference on learning representations

[12] He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international conference

on computer vision, pp 2961–2969

[13] He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE

conference on computer vision and pattern recognition, pp 770–778

[14] Bai Y, Zhang Y, Ding M, Ghanem B (2018) SOD-MTGAN: Small object detection via multi-task generative

adversarial network. In: Proceedings of the European conference on computer vision, pp 206–221

[15] Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2018) Deep learning for generic object

detection: A survey. arXiv preprint arXiv:180902165

[16] Shen Z, Liu Z, Li J, Jiang YG, Chen Y, Xue X (2017) DSOD: Learning deeply supervised object detectors from

scratch. In: Proceedings of the IEEE international conference on computer vision, pp 1919–1927

[17] Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and

semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp

580–587

[18] Bell S, Lawrence Zitnick C, Bala K, Girshick R (2016) Inside-outside net: Detecting objects in context with skip

pooling and recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern

recognition, pp 2874–2883

[19] Wang H, Wang Q, Gao M, Li P, Zuo W (2018) Multi-scale location-aware kernel representation for object

detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1248–1257

[20] Li H, Liu Y, Ouyang W, Wang X (2019) Zoom out-and-in network with map attention decision for region proposal

and object detection. Int J Comput Vis 127(3):225–238

[21] Tychsen-Smith L, Petersson L (2017) DeNet: Scalable real-time object detection with directed sparse sampling. In:

Proceedings of the IEEE international conference on computer vision, pp 428–436

21

[22] Jiang L, Zhong W, Ji J, Xiong H (2019) Object codetection based on a higher-order conditional random field. J

Electron Imaging 28(2):023019

[23] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: Single shot multibox detector. In:

Proceedings of the European conference on computer vision, pp 21–37

[24] Law H, Deng J (2018) CornerNet: Detecting objects as paired keypoints. In: Proceedings of the European

conference on computer vision, pp 734–750

[25] Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the

IEEE international conference on computer vision, pp 2980–2988

[26] Chen Y, Zhao M, Tan X, Tang H, Sun D (2019) Accurate and efficient object detection with context enhancement

block. In: 2019 IEEE international conference on multimedia and expo (ICME), pp 1726–1731

[27] Wei XS, Luo JH, Wu J, Zhou ZH (2017) Selective convolutional descriptor aggregation for fine-grained image

retrieval. IEEE Trans Image Process 26(6):2868–2881

[28] Tran CK, Tseng CD, Chao PJ, Ting HM, Chang L, Huang YJ, Lee TF (2017) Local intensity area descriptor for

facial recognition in ideal and noise conditions. J Electron Imaging 26(2):023011

[29] Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

[30] Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst

110(3):346–359

[31] Liu H, Li L, Wang Z, Huo Z (2017) STBD: A simple tri-bit binary descriptor for point matching. IET Comput Vis

11(8):691–701

[32] Lei Z, Pietikäinen M, Li SZ (2013) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell

36(2):289–302

[33] Duan Y, Lu J, Feng J, Zhou J (2017) Learning rotation-invariant local binary descriptor. IEEE Trans Image Process

26(8):3636–3651

[34] Ding X, Luo Y, Yi Y, Jie B, Wang T, Bian W (2016) Orthogonal design for scale invariant feature transform

optimization. J Electron Imaging 25(5):053030

[35] Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe:

Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference

on multimedia, pp 675–678

[36] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al. (2016)

TensorFlow: A system for large-scale machine learning. In: 12th USENIX symposium on operating systems design

and implementation, pp 265–283

[37] Chen X, Gupta A (2017) An implementation of Faster R-CNN with study for region sampling. arXiv preprint

arXiv:170202138

[38] Li Z, Peng C, Yu G, Zhang X, Deng Y, Sun J (2017) Light-head R-CNN: In defense of two-stage object detector.

arXiv preprint arXiv:171107264

