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Abstract

Accurate vascular geometry modeling is an essential task in computer assisted vascular surgery and therapy.
This paper presents a vessel cross-section based implicit vascular modeling technique, which represents a
vascular surface as a set of locally fitted implicit surfaces. In the proposed method, a cross-section based
technique is employed to extract from each cross-section of the vascular surface a set of points, which are
then fitted with an implicit curve represented as 2D radial basis functions with ellipse constraint. All these
implicitly represented cross-section curves are then being considered as 3D cylindrical objects and combined
together using a certain partial shape-preserving spline to build a complete vessel branch; different vessel
branches are then blended using a extended smooth maximum function to construct the complete vascular
tree. Experimental results show that the proposed method can correctly represent the morphology and
topology of vascular structures with high level of smoothness. Both qualitative comparison with other
methods and quantitative validations to the proposed method have been performed to verify the accuracy
and smoothness of the generated vascular geometric models.
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1. Introduction

3D visualization of vascular structures is of practical value and importance within the field of computer
assisted vascular analysis and morphometry [25]. Direct volume rendering (DVR) technique is one of the
most popular methods for the 3D visualization of vessels structures contained in a volume dataset. The
image generated in this way can be quite suitable for the task of diagnosing vascular disease. However, just
to be able to visualize the hidden vascular structures is far from sufficient. The accurate modeling of vascular
geometry is essential in many other clinical applications. For vascular intervention planning, it is not an
easy task to understand the topology of a vessel tree without the actual vascular geometry. In the case of
computer-guided vascular surgery, it can be very difficult to accurately locate the vessel objects directly from
the generated image by DVR technique. In addition, the accurate vascular models are of utmost importance
to perform reliable simulations of blood flow (computational hemodynamic) [17], which enables the study of
hemodynamic characteristics such as wall shear stress and intra-aneurysmal flow patterns. A specific vascular
geometry model enables us to design and evaluate possible modification of personalized vasculature, which
is helpful for the treatment decision-making on vascular diseases. Furthermore, the modeling of vascular
geometry is also the primary issue that needs to be solved for computer aided vascular surgery, and future
fully automatic unmanned vascular surgery. Without the accurate information of vascular geometry, the
computer-controlled manipulator is unable to perform the accurate collision detection, and therefore cannot
achieve a fine vascular surgery.
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In this paper, we propose to model the smooth vascular geometry based on automatic vessel segmentation.
Usually, the segmented dataset is represented as a discrete point set, which is prone to produce poor
visualization result and not suitable for the tasks required in many clinical applications, such as vessel shape
analysis, blood flow simulation, vascular surgery planning and simulation, and so on. In addition, none
of current segmentation methods can guarantee a perfect segmentation in all clinical scenarios, thus it is
inevitable to perform a manual inspection of the automatically generated segmentation results to meet the
requirements of different clinical cases [17]. In consequence, the accurate geometry modeling of vasculatures
from the automatic vessel segmentation is necessary and essential to the clinical applications of vascular
surgery and therapy.

Generally, the methods for modeling vascular geometry can be classified into two categories: explicit
modeling and implicit modeling. Explicit modeling methods utilise either polygon meshes or parametric
functions, e.g. non-uniform rational B-spline (NURBS) function to represent vascular surfaces. Explicit
technique is relatively mature, and the explicitly modelled shapes are very efficient for rendering, thus, the
explicit technique is widely applied to the geometry modeling of vasculatures in many medical software
systems. However, explicitly modelled vasculatures are not suitable for computer assisted surgery, as per-
forming collision detection for explicitly represented surfaces is a very challenging task, which is the primary
problem needing to be solved for computer assisted vascular surgery. On the other hand, implicit modeling
technique represents a geometric shape as a field function and has received increasing attention recently
due to their natural way of representing solid objects and their innate properties on soft shape blending.
In addition, when vasculatures are modelled as implicit functions, the problem of collision detection can be
easily solved, as it is easy and convenient to tell whether a point lies inside or outside the vascular struc-
tures [1]. Implicit modeling techniques are particularly suitable for modeling branching geometric objects as
modeling a complex tree-like geometric object can be reduced to a problem of modeling a set of cylindrical
geometric objects, which is a very simple geometric modeling task. Hence, implicit modeling technique has
great advantages over explicit method in future computer assisted automatic surgery.

In this paper, a new method is developed for the accurate geometry modeling of vasculatures based on
the vascular centreline descriptions. In the proposed method, a set of points depicting the profiles of the
vessel’s cross-sections is extracted first using a cross-section based vascular-specific method. The extracted
point set specifying each vessel cross-section is then fitted with an implicit curve represented as 2D radial
basis functions with ellipse constraint [22]. Then all the implicitly represented cross-sections are blended
flexibly along the centreline using the partial shape-preserving splines [21] to build smooth vessel branches;
finally, different vessel branches are blended using the extended smooth maximum function [18] to construct
the complete vascular tree. The presented experiment results show that the modelled vascular shapes are
of high smoothness and faithfulness. In addition, some qualitative and quantitative comparison with other
methods have been carried out for the proposed technique to validate the accuracy and smoothness of the
generated vascular models.

2. Related work

2.1. Vascular modeling

In general, the techniques for modeling vascular geometry can be classified into two groups: explicit
modeling method and implicit modeling method. In explicit modeling methods, a vascular surface is rep-
resented as polygon meshes or parametric functions. As the explicitly modeled shapes are very efficient for
rendering, various explicit modeling methods have been proposed for the geometry modeling of vasculatures
in the last two decades. A representative example is to utilize simple cylinder-like geometric primitives,
such as cylinders [23] or truncated cones [10], to construct the vascular surfaces. In order to achieve smooth
transition at the points of branching, several advanced explicit modeling techniques have been suggested to
construct vascular shapes along the centreline [11, 8, 4, 32, 31]. However, in the explicit method, it is a
difficult task to perform shape blending operations and bifurcations [3].

On the other hand, implicit modeling techniques developed in Bloomenthals work [3] can be applied to
reconstruct the geometry of vascular structures. Implicitly represented geometric objects are inherently easy
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to combine in various ways, which make it simple to implement ramification. However, there is still a long way
to go for existing implicit modeling techniques to achieve a satisfactory result that meets the requirements
of accurate computer-aided diagnosis and treatment of vascular diseases. The implicit vascular geometry
modelled using convolution surfaces (CS) [24] is only a morphological approximation, and the quality of the
resulting surfaces based on multi-level partition of unity implicits (MPUIs) [28, 27] is generally poor and has
to be improved using an additional remeshing step. Hong et al. [13, 12, 14] developed piecewise algebraic
splines (PAS) [20] based methods for the reconstruction of vascular geometry, which can reconstruct vascular
tree with excellent smoothness and high accuracy. However, the accuracy of the reconstructed vasculatures
will be greatly affected in the case of highly curved centreline. Kretschmer et al. [17] presented a vascular
modeling method based on sweep surfaces, which can generate and correct smooth high-quality vascular
structures. However, this method can only guaranteed C1 continuity of the model surface. Recently,
Kerrien et al. [16] presented a local implicit modeling (LIM) algorithm to improve the methods proposed by
Tsingos et al. [29] and Bittar et al. [2], with a more efficient energy formulation and a more discriminative
blob selection criterion. The LIM method is claimed to fully automatically and accurately fit surfaces to
data points, despite holes and noise.

2.2. Implicit surface modeling using radial basis functions

One of the most popular techniques for implicit surface modeling is to use blobby objects. In this
technique, an object is implicitly represented as a collection of blobs, each of which could be considered
as a point energy with an influence field that decreases with the increase of distance from the source of
energy [22]. In general, the potential field of influence can be defined as a function of distance r, such as

Φ(r) = e−ar2 , which is a commonly used type of radial basis function. For simplicity and computational
efficiency, radial basis functions are also often defined as increasing functions of distance r, especially when
radial basis functions are used together with polynomial functions, such as those used in polyharmonic
splines. With radial basis functions, we can define an implicit surface as a level set of the weighted sum of a

collection of metaballs with their centres at {Pi}ni=1 respectively:
n∑

i=1

λiΦi(r) [26], where Φi(r) corresponds

to the metaball with centre Pi. Radial basis functions have several advantages when applied to data fitting
in geometric modeling, such as the adjustable local influence as well as the invariance under Euclidean
transformation. Hence, increasing attentions have been given on the research of reconstructing implicit
surfaces from scattered points using radial basis functions [22, 6, 5, 30]. In these techniques, an implicit
surface can be represented by the candidate functions in the following form:

F (P) =
n∑

i=1

λiΦi(∥P− Pi∥) + ρ(P) (1)

where P = (x, y, z) is an arbitrary point in 3D space R3, and ρ(P) is a low degree polynomial, which
can be chosen as a constant, linear, or quadratic. Generally, the degree of polynomial ρ(P) should not be
chosen larger than four, as it becomes increasingly difficult to control the fitting results with the increasing
degree of the polynomial [15]. Inspired by Fitzgibbon et al.’s work [9], Li et al. [22] developed an implicit
fitting algorithm based on radial basis functions with ellipsoid constraint, in which the polynomial part
ρ(P) is always constrained to an ellipsoid expression. Compared with other implicit fitting techniques, the
technique based on radial basis functions with ellipsoid constraint does not need to use information on surface
normal but still can fit the data accurately. One appealing feature of radial basis functions with ellipsoid
constraint is that even the data to be fitted is quite sparse, incomplete or even with big holes, a relatively
meaningful fitting can still be achieved with radial basis functions with ellipsoid constraint. The algorithm
is straightforward to implement, as it is a one-step fitting based on solving a simple general eigen-system
[22]. As our method is cross-section based, what we used in this research is actually the 2D version of radial
basis functions with ellipsoid constraint, where the constraint term ρ(P) becomes an ellipse.
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3. Proposed method

There are three main steps in our proposed vessel modeling method. Firstly, each set of control points
for each vessel cross-section obtained from a vascular segmentation process is fitted using 2D radial basis
functions with ellipse constraint based on the local Frenet frame; then, by performing a distance mapping
along the vessel centreline, all the implicitly represented cross-section contours are blended flexibly using
the partial shape-preserving splines to build vessel branches; finally, different vessel branches are blended
using the extended smooth maximum function to construct the complete vascular tree.

3.1. Accurate implicit curve fitting of vessel cross-section profile using 2D radial basis functions with ellipse
constraint

3.1.1. The extraction of control points for the specification of vessel cross-sections

Suppose S(s) is the parametric curve that represents the centreline of a vessel branch, and S(si) is a
knot point on the centreline; then, we can extract the control points for specifying the cross-section based
on S(si) in the following steps:

(1) Calculate the Frenet frame based on S(si). Frenet frame can be intuitively constructed by calculating
the tangent T, normal N, and binormal B vectors. The calculation of T, N, B based on the centreline
point S(si) are given by:

T(si) =
S(s)

′

∥ S(s)′ ∥
|s=si

N(si) =
S(s)”

∥ S(s)” ∥
|s=si

B(si) = T(si)×N(si)

(2)

(2) For each knot position S(si), specify a rectangle based on the Frenet-frame defined at S(si) such that
it is normal to T and its edges are aligned with the Binormal unit vector B and Normal unit vector N
(See Figure 1(a)).

(3) Map the intensity of the segmented vascular image into the defined rectangle, and extract the contour
points with zero intensive value. Since the shape of vessel can be identified as the voxels with intensive
value ≥ 0 after the process of segmentation, we can conveniently extract the voxel points with zero
intensive value as the control points for specifying the vessel cross-sections. As shown in Figure 1(b),
the region inside the vessel is denoted as the green pixels (intensive value lager than zero); while the
region outside the vessel is denoted as the blue pixels (intensive value smaller than zero). Figure 1(c)
shows the extracted contour points with zero intensive value (denoted as the red points).

Figure 1: The specification of vessel cross-section using 2D radial basis functions with ellipse constraint. (a) Moving the defined
rectangle to intersect with the vessel surface. (b) Mapping the intensive value of the segmented vessel image into the rectangle.
(c) The extraction of contour points with zero intensive value. (d) The smooth implicit curve specified by the extracted contour
points using 2D radial basis functions with ellipse constraint.
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3.1.2. Accurate cross-section fitting using 2D radial basis functions with ellipse constraint

Let {P†
i}(b, n)(i = 1, 2, ..., N) be a set of contour points extracted from the cross-section of vessel surface

regarding the bn-coordinate plane of the Frenet frame. In the Frenet frame space, P†
i is considered as 2D

data point, and then the fitting technique presented in section 2.2 becomes an implicit curve fitting. Let △
be the 2D control polygon defined by the set of points, the corresponding implicitly fitted curve representing
the vessel cross-section contour can be specified by the formula:

C△(P†) =
n∑

i=1

λiΦi(
∥∥∥P† − P†

i

∥∥∥) + ρ(P†) = 0 (3)

In which P† is the arbitrary 2D data point in the Frenet frame plane. As this is a 2D curve fitting, the
constrained polynomial part in the fitting model now corresponds to an ellipse. Thus, the polynomial part
in formula 3 is replaced by [22]:

ρ(P†) = Ab2 + 2Bbn+ Cn2 + 2Eb+ 2Fn+G (4)

where the constraint for the polynomial is AC −B2 > 0.
Figure 1(d) demonstrates the vessel cross-section contour is accurately specified by the curve fitting with

C△(P†) = 0 using radial basis functions with ellipse constraint, which is the interpolating implicit curve and
can go through all the control points.

Figure 2: An extruded implicit surface model along arbitrary centreline from the cross-section profiles specified in Figure 1(d).

3.2. Combining implicit cross-section profiles using shape-preserving implicit splines

3.2.1. Extruding 2D cross-section profile along the centreline

Once the freeform cross-section is specified in its local Frenet frame, we can conveniently extrude the
2D implicit curve along the centreline S by means of distance mapping to generate a 3D implicit surface.
Suppose P(x, y, z) is an arbitrary point in 3D space R3, and the distance mapping is performed by the
following steps:

(1) Calculate the centreline point S(s0) that is closest point to P; that is, s0 satisfies

∥ P− S(s0) ∥ = mins(∥ P− S(s) ∥) (5)

(2) Transform P(x, y, z) to the tangent space point P†(b, n, t) based on the corresponding Frenet-frame of
S(s0):

b =
−−−−−−→
P− S(s0) ·B(s0)

n =
−−−−−−→
P− S(s0) ·N(s0)

t = s0

(6)

in which · is the scalar product of two vectors; B(s0) is the binormal unit vector on the Frenet-frame of
S(s0); and N(s0) is the normal unit vector on the Frenet-frame of S(s0).
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Suppose the cross-section profile is represented as C△(P†(b, n, t)) = 0 in its local Frenet frame, then by
performing the distance mapping: b = X(x, y, z), n = Y (x, y, z) and t = Z(x, y, z), the extruded implicit
surface can be represented as:

F (x, y, z) = C△(P†(X,Y, Z)) = 0 (7)

which constructs an implicit tubular shape along its centreline from the specified cross-section. Figure 2
shows a extruded implicit surface model along arbitrary centreline from the cross-section profiles specified
in Figure 1(d).

3.2.2. Modeling of the freeform implicit surface along the centreline with varying cross-sections

Unlike 3D parametric spline surfaces, 3D implicit surfaces can be described as the result of blending
a set of 2D implicit control curves using spline basis functions. One simple way is to design a freeform
implicit surface as a weighted sum of a set of 2D contour curves distributed along a coordinate axis (i.e.
z-axis), as the method presented in [20]. In order to model the freeform implicit surfaces along a given
curved centreline, not limited to straight coordinate axis, we can perform a distance mapping, and define
an overall implicit surface as the weighted sum of the sequence of cross-section profiles distributed along the
given centreline. The required implicit surface model can be described implicitly in the Frenet-frame space
by the following formula:

f(b, n, t) =
L∑

j=1

C△,j(P
†(b, n, t))Bj(t− sj) = 0 (8)

in which C△,j(P
†(b, n, t)) is the implicitly defined cross-section based on the j-th centreline point; and

Bj(t − sj) is the shape-preserving implicit spline function [21] based on the j-th centreline point; b, n and
t respectively are defined in the Frenet-frame space according to Equations 6; {sj} is a list of knots for the
parametric position of centreline S(s); L is the number of cross-sections. We choose the sample centreline
points in an interval d for defining cross-section, as it is unnecessary to define the cross-section for every
centreline point. And Bj(t− sj) in Equation 8 is expanded as following:

Bj(t− sj) = Bm
[−d/2,d/2],δ(t− sj) (9)

In which the general spline basis function Bm
[a,b],δ(x) is defined as [20]:

B
(m)
[a,b],δ(x) = Hm(

b− x

δ
)−Hm(

a− x

δ
) (10)

where [a, b] is an interval with a ≤ b; Hm(x) is the smooth unit step function introduced in [19]; and δ is the
smooth parameter for controlling the blending range. For a given centreline S, by performing the mapping
presented in Subsection 3.2.1: b = X(x, y, z), n = Y (x, y, z) and t = Z(x, y, z), the implicit surface model
described in the Frenet-frame space can be transformed to R3 space by the following form:

F (x, y, z) = f(b, n, t)

= f(X(x, y, z), Y (x, y, z), Z(x, y, z)) = 0
(11)

As presented in Figure 3, a vessel branch is modelled as a weighted sum of the nine variable cross-sections
along the centreline with the shape-preserving implicit spline functions. (a) shows the nine defined rectangles
intersecting with a vessel branch, and (b) presents the corresponding cross-section contours specified by
the fitting curves using 2D radial basis functions with ellipse constraint. (c) is the vessel branch model
constructed as a weighted sum of the nine variable cross-sections along the centreline.

3.3. Combining vessel branches using the extended smooth maximum function

The implicitly defined shapes of different branches need to be carefully blended to construct the overall
implicit surfaces corresponding to the entire tree structure. In order to achieve a smooth shape-preserving
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Figure 3: The modeling of a vessel branch by weighted summing nine variable cross-sections along the centreline with the
shape-preserving implicit spline functions. (a) The nine defined rectangles intersecting with a vessel branch. (b) The cor-
responding cross-section contours specified using radial basis functions with ellipse constraint curves. (c) The vessel branch
model constructed as a weighted sum of the nine variable cross-sections.
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Figure 4: Smooth and accurate blending of two implicitly defined vessel branching models with the smooth maximum function.
(a) and (b) represent two individual vessel branching models, and (c) represents the blending result of these two models by
using the extended smooth maximum function.

blending, we employ the extended smooth maximum function to blend different implicitly-defined objects
together. The extended smooth maximum function is defined in [18]:

maxn,δ(x, y) =
1

2
(x+ y + |x− y|n,δ) (12)

where |x|n,δ is a kind of smooth absolute function with degree of smoothness n and blending range-control
parameter δ. Suppose F1 and F2 are two implicit shapes constructed from different centerlines, the smooth
blending of these two implicit shapes can be achieved by the following operation:

Fblend = maxn,δ(F1, F2) =
1

2
(F1 + F2 + |F1 − F2|n,δ) (13)

As shown in Figure 4, two implicitly defined vessel branching models are smoothly and accurately blended,
where the two original vessel shapes are kept unchanged except the regions close to their joint. (a) and (b)
represent two individual vessel branching models, and (c) represents the blending result of these two models
by using the extended smooth maximum function maxn,δ(x, y).

4. Results and Discussion

4.1. Modeling results based our method

We have applied the proposed method to several 3D medical datasets for the geometry modeling of
vasculatures. Two typical modeling results are shown in Figure 5 and 6, representing the representative
vascular structures in the human body. One example is the modeling of Carotid Artery from the 3D
magnetic resonance angiography (MRA) images with a resolution of 512 × 512 × 206. Figure 5(a) is the
isosurface rendering of segmentation result of carotid artery, and (b) is the corresponding modeling result
with our method. The other example is the modeling of Liver Portal Vein from the 3D computerized
tomography angiography (CTA) images with a resolution of 512 × 512 × 300. Similarly, Figure 6(a) is the
isosurface rendering of segmented liver portal vein, and (b) is the corresponding modeling result with our
method. As presented in the figures, the isosurface rendering of segmentation results suffers from aliasing
artifacts and diverges considerably from the real vessels. On the other hand, our modeling method can
generate vascular models with superior visual quality and produce smooth transitions at branchings. From
the visual comparison between our modeling results and the segmentation results, we can conclude the
preliminary judgment that the morphology and topology of vascular structures, even very thin and curved
branches, can be correctly and faithfully modelled using the proposed method.
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Figure 5: The modeling of CTA Carotid Artery. (a) The isosurface rendering of segmentation result. (b) The modeling result
using our method.

Figure 6: The modeling of segmented liver portal vein. (a) The isosurface rendering of segmentation result. (b) The modeling
result using our method.

4.2. Comparison with the method based on PAS

In this section, we investigation the qualitative comparison between our proposed method and the tech-
nique based on PAS, since it is also a centreline based implicit modeling method and can achieve vascular
models with superior quality. Generally, the proposed method has two main differences with the PAS based
technique. Firstly, our method uses the 2D radial basis functions with ellipse constraint technique to specify
the vessel cross-section contours instead of 2D PAS. 2D radial basis functions with ellipse constraint tech-
nique can construct interpolating implicit curves (see the solid green curve C2 in Figure 7(b)), which is able
to go through all the control points; while the 2D PAS is a kind of approximating implicit curve, which is
unable to go through all the control points (see the dashed yellow curve C1 in Figure 7(b)). That is, 2D
radial basis functions with ellipse constraint technique can specify the vessel cross-section more accurately
than 2D PAS technique does.
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Figure 7: The comparison between PAS method and our method for the specification of vessel cross-section contour. (a)
The defined rectangle intersecting with a vessel branch; (b) the specification of cross-section contour by PAS method and our
method.

The other difference is the distance mapping way for extruding the implicit surface along the centreline.
In PAS based technique, the orthonormal basis was firstly defined by the local Frenet frame at each sampled
skeletal point, and then the coordinates of the relative point were transformed into its local Frenet frame
space. In this distance mapping way, implicit surface is extruded along several straight-line segments to
simulate the curved centreline. In the case of much curved centreline, if distance between the neighbour
skeletal points is not small enough, the extruded implicit surface will suffer from strong discontinuity (see
Figure 8(b)). On the other hand, in radial basis functions with ellipse constraint based technique, we firstly
find out the nearest skeletal point for the arbitrary point in 3D space, and then transform this 3D point’s
coordinate into the local Frenet frame space defined at its nearest skeletal point. The distance mapping way
actually remapping the 3D point’s coordinate into the distance field along the centreline, which enables to
extrude the implicit surface along any given curved centreline. As shown in Figure 8(c), our method can
achieve the same excellent smoothness as the PAS based technique.

4.3. Validation

Besides the visual inspection, it is necessary to perform the quantitative validation analysis for estimating
whether the underlying data are faithfully represented with certain smoothness [25]. We calculate the mean
Euclidean distance between the segmented data and the generated model for judging the modeling accuracy.
We describe the deviation in relation to the resolution of the test dataset, i.e. length of the voxel diagonal
(voxDiag) [27]. For estimating the smoothness, we calculate the average of the unsigned mean curvatures
(AUMC) for all voxels on the modelled surface, which is a effective indicator for examining the degree of
smoothness of the surface [7].

Table 1: Quantitative comparison between our proposed method and the MPUI based method and the PAS based method for
the modeling of different vascular datasets. Distance values are related to voxDiag. The accuracy is measured by calculating
the mean distance between the segmentation results and the generated models, and the smoothness is estimated by measuring
the AUMC of the reconstructed surface.

Data sets MPUI based method PAS based method The proposed method

Distance AUMC Distance AUMC Distance AUMC
Carotid Artery 0.51 0.26 0.33 0.21 0.26 0.26
Liver Portal Vein 0.47 0.19 0.36 0.12 0.33 0.16

Cerebral Vasculatures 0.35 0.54 0.33 0.28 0.28 0.25
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Figure 8: The comparison between PAS method and our method for extruding implicit surface models along a very curved
centreline. (a) The overview of the segmented vessel tree and the very curved branch for modeling indicated the ellipse. (b)
The modeling result of the curved branch based on PAS method. (c) The modeling result of the curved branch based on our
method.

Table 1 shows the direct quantitative comparisons between our proposed method and the MPUI based
Method and the PAS based method for the modeling of different vascular datasets. The smaller Distance
values represent the more accurate generated model, and the smaller AUMC values represent the smoother
generated model. As showed in the table, the mean deviations corresponding to the models built from our
method are much smaller than that based on the MPUI method and PAS method for each experimental
data set. In other words, our method can achieve more accurate vessel models than the other two methods.
Although the AUMCs of our built models are not the smallest, they are very close to that based on PAS
method, which is regarded as an excellent approach to model vessel tree with great smoothness property
[17]. For the Carotid Artery dataset, the AUMC based on our method is even smaller than that based on
PAS method. The validation results demonstrate that the proposed modeling method is able to generate
highly accurate vascular models with certain smoothness.

4.4. Computational Complexity

Generally,the time complexity of the proposed method depends on the complexity of the vascular tree as
well as the resolution of input dataset. In addition, the interval d in Equation 9 for defining cross-section will
also affect the efficiency of the proposed method. In general, the value of interval d is set to be proportional
to radius of the current defined cross-section, which can guarantee a reasonable trade-off between efficiency
and accuracy. To demonstrate the computational cost of our algorithm, Table 2 presents the information
concerning the complexity of the resulting models and the computational time of the proposed based on the
medical datasets used above.

Table 2: Performance measurements of the proposed method for the geometry modeling of anatomic vasculares carried out on
an Intel Core i5 CPU with two cores @1.6GHz and 8GB RAM. The computational time is measured in seconds.

Datasets Resolution Number of vertices Number of faces Time (second)

Carotid Artery 512× 512× 206 67933 135745 20.12
Liver Portal Vein 512× 512× 300 65918 131788 82.26

Cerebral Vasculatures 352× 442× 114 63870 137324 35.70
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5. Conclusion

This paper presents a novel method for the accurate geometry modeling of vasculatures based on geomet-
ric centreline descriptions. Generally, the proposed method has two ingredients to achieve accurate vascular
models. Firstly, compared to other methods based on regular spline interpolation, the proposed method is
an implicit modeling technique, which is easy to perform blending for different geometric objects in various
ways and has the intrinsic attribute of representing volumetric objects. In addition, the proposed technique
is based on 2D radial basis functions with ellipse constraint technique, which can accurately specify the vessel
cross-section profiles even with sparse control points. The other ingredient is the distance mapping method
for extruding the implicit surface along the centerline. In the proposed method, we remap the 3D points
into the distance field along the centerline, which enables to extrude the implicit surface continuously along
highly curved centerline and achieve cylindrical model with excellent smoothness. The proposed distance
mapping method can be extended to construct generalized cylinders along any given curved centerline with
high-smoothness quality. Qualitative validations have illustrated that the proposed technique can construct
more precise vascular models than the MPUI based method and the PAS based method.

The proposed method is based on the extracted centreline of the vascular tree. However, the centreline
extraction of vasculatures is not an easy task, and may involve certain manual interventions. One of our
future work is to develop more automatic and robust method for extracting the centreline of vascular
structures. The design and evaluation of the possible modification of personalized vascular model is helpful
to choose the optimal interventional procedures for treating vascular diseases. Another area of our future
work is on developing implicit geometry-editing technique to support direct interactive modification of
patient-specific vascular models, and to conduct the computational simulation of the blood flow within the
constructed and modified vascular models to demonstrate effectiveness of planned treatments of the diseased
vascular structure.
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