2,526 research outputs found

    Tree-Structured Neural Machine for Linguistics-Aware Sentence Generation

    Full text link
    Different from other sequential data, sentences in natural language are structured by linguistic grammars. Previous generative conversational models with chain-structured decoder ignore this structure in human language and might generate plausible responses with less satisfactory relevance and fluency. In this study, we aim to incorporate the results from linguistic analysis into the process of sentence generation for high-quality conversation generation. Specifically, we use a dependency parser to transform each response sentence into a dependency tree and construct a training corpus of sentence-tree pairs. A tree-structured decoder is developed to learn the mapping from a sentence to its tree, where different types of hidden states are used to depict the local dependencies from an internal tree node to its children. For training acceleration, we propose a tree canonicalization method, which transforms trees into equivalent ternary trees. Then, with a proposed tree-structured search method, the model is able to generate the most probable responses in the form of dependency trees, which are finally flattened into sequences as the system output. Experimental results demonstrate that the proposed X2Tree framework outperforms baseline methods over 11.15% increase of acceptance ratio

    Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6

    Get PDF
    Pressure can tune material's electronic properties and control its quantum state, making some systems present disconnected superconducting region as observed in iron chalcogenides and heavy fermion CeCu2Si2. For CaC6 superconductor (Tc of 11.5 K), applying pressure first Tc increases and then suppresses and the superconductivity of this compound is eventually disappeared at about 18 GPa. Here, we report a theoretical finding of the re-emergence of superconductivity in heavily compressed CaC6. The predicted phase III (space group Pmmn) with formation of carbon nanofoam is found to be stable at wide pressure range with a Tc up to 14.7 K at 78 GPa. Diamond-like carbon structure is adhered to the phase IV (Cmcm) for compressed CaC6 after 126 GPa, which has bad metallic behavior, indicating again departure from superconductivity. Re-emerged superconductivity in compressed CaC6 paves a new way to design new-type superconductor by inserting metal into nanoporous host lattice.Comment: 31 pages, 12 figures, and 4 table

    Microglia in the aging brain: relevance to neurodegeneration

    Get PDF
    Microglia cells are the brain counterpart of macrophages and function as the first defense in the brain. Although they are neuroprotective in the young brain, microglia cells may be primed to react abnormally to stimuli in the aged brain and to become neurotoxic and destructive during neurodegeneration. Aging-induced immune senescence occurs in the brain as age-associated microglia senescence, which renders microglia to function abnormally and may eventually promote neurodegeneration. Microglia senescence is manifested by both morphological changes and alterations in immunophenotypic expression and inflammatory profile. These changes are likely caused by microinvironmental factors, but intrinsic factors cannot yet be completely excluded. Microglia senescence appears to underlie the switching of microglia from neuroprotective in the young brain to neurotoxic in the aged brain. The hypothesis of microglia senescence during aging offers a novel perspective on their roles in aging-related neurodegeneration. In Parkinson's disease and Alzheimer's disease, over-activation of microglia may play an active role in the pathogenesis because microglia senescence primes them to be neurotoxic during the development of the diseases

    Observation of prolonged coherence time of the collective spin wave of atomic ensemble in a paraffin coated Rb vapor cell

    Full text link
    We report a prolonged coherence time of the collective spin wave of a thermal 87Rb atomic ensemble in a paraffin coated cell. The spin wave is prepared through a stimulated Raman Process. The long coherence time time is achieved by prolonging the lifetime of the spins with paraffin coating and minimize dephasing with optimal experimental configuration. The observation of the long time delayed-stimulated Stokes signal in the writing process suggests the prolonged lifetime of the prepared spins; a direct measurement of the decay of anti-Stokes signal in the reading process shows the coherence time is up to 300 us after minimizing dephasing. This is one hundred times longer than the reported coherence time in the similar experiments in thermal atomic ensembles based on the Duan-Lukin-Cirac-Zoller (DLCZ) and its improved protocols. This prolonged coherence time sets the upper limit of the memory time in quantum repeaters based on such protocols, which is crucial for the realization of long-distance quantum communication. The previous reported fluorescence background in the writing process due to collision in a sample cell with buffer gas is also reduced in a cell without buffer gas.Comment: 4 pages, 4 figure

    Dynamic Model of Spur Gear Pair with Modulation Internal Excitation

    Get PDF
    In the actual measurements, vibration and noise spectrum of gear pair often exhibits sidebands around the gear mesh harmonic orders. In this study, a nonlinear time-varying dynamic model of spur gear pair was established to predict the modulation sidebands caused by the AM-FM modulation internal excitation. Here, backlash, modulation time-varying mesh stiffness, and modulation transmission error are considered. Then the undamped natural mode was studied. Numerical simulation was made to reveal the dynamic characteristic of a spur gear under modulation condition. The internal excitation was shown to exhibit obvious modulation sideband because of the modulation time-varying mesh stiffness and modulation transmission error. The Runge-Kutta method was used to solve the equations for analyzing the dynamic characteristics with the effect of modulation internal excitation. The result revealed that the response under modulation excitation exhibited obvious modulation sideband. The response under nonmodulation condition was also calculated for comparison. In addition, an experiment was done to verify the prediction of the modulation sidebands. The calculated result was consistent with the experimental result

    An Unsupervised Three-way Decisions Framework of Overload Preference Based on Adjusted Weight Multi-attribute Decision-making Model

    Get PDF
    AbstractIn the process of traffic control, law-enforcement officials are required to accurately evaluate the potential probability of freight-driver's overloading behavior. This study establishes a model of overloading preference assessment on the basis of freight-driver's individual variation. With indexes selecting, the equal-weight and AHP-based adjusted weight decision-making model are used respectively to evaluate freight-driver's overload preference. Synthesizing the results from two models, we present a three-way decisions model to make judgment

    Evidence for a full energy gap for nickel-pnictide LaNiAsO_{1-x}F_x superconductors by ^{75}As nuclear quadrupole resonance

    Full text link
    We report systematic ^{75}As-NQR and ^{139}La-NMR studies on nickel-pnictide superconductors LaNiAsO_{1-x}F_x (x=0, 0.06, 0.10 and 0.12). The spin lattice relaxation rate 1/T_1 decreases below T_c with a well-defined coherence peak and follows an exponential decay at low temperatures. This result indicates that the superconducting gap is fully opened, and is strikingly different from that observed in iron-pnictide analogs. In the normal state, 1/T_1T is constant in the temperature range T_c \sim 4 K < T <10 K for all compounds and up to T=250 K for x=0 and 0.06, which indicates weak electron correlations and is also different from the iron analog. We argue that the differences between the iron and nickel pnictides arise from the different electronic band structure. Our results highlight the importance of the peculiar Fermi-surface topology in iron-pnictides.Comment: 4 pages, 5 figure
    • ā€¦
    corecore