30,553 research outputs found

    The breakage prediction for hydromechanical deep drawing based on local bifurcation theory

    Get PDF
    A criterion of sheet metal localized necking under plane stress was established based on the bifurcation theory and the characteristics theory of diïŹ€erential equation. In order to be capable to incorporate the directional dependence of the plastic strain rate on stress rate, Ito-Goya’s constitutive equation which gave a one to one relationship between stress rate component and plastic strain rate component was employed. The hydromechanical deep drawing process of a cylindrical cup part was simulated using the commercial software ABAQUS IMPLICIT. The onset of breakage of the part during the forming process was predicted by combining the simulation results with the local necking criterion. The proposed method is applied to the hydro-mechanical deep drawing process for A2219 aluminum alloy sheet metal to predict the breakage of the cylindrical cup part. The proposed method can be applied to the prediction of breakage in the forming of the automotive bodies

    Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol

    Full text link
    The participant attack is the most serious threat for quantum secret-sharing protocols. We present a method to analyze the security of quantum secret-sharing protocols against this kind of attack taking the scheme of Hillery, Buzek, and Berthiaume (HBB) [Phys. Rev. A 59 1829 (1999)] as an example. By distinguishing between two mixed states, we derive the necessary and sufficient conditions under which a dishonest participant can attain all the information without introducing any error, which shows that the HBB protocol is insecure against dishonest participants. It is easy to verify that the attack scheme of Karlsson, Koashi, and Imoto [Phys. Rev. A 59, 162 (1999)] is a special example of our results. To demonstrate our results further, we construct an explicit attack scheme according to the necessary and sufficient conditions. Our work completes the security analysis of the HBB protocol, and the method presented may be useful for the analysis of other similar protocols.Comment: Revtex, 7 pages, 3 figures; Introduction modifie

    High-Fidelity Archeointensity Results for the Late Neolithic Period From Central China

    Get PDF
    Archeomagnetism focuses on exploring high-resolution variations of the geomagnetic field over hundreds to thousands of years. In this study, we carried out a comprehensive study of chronology, absolute and relative paleointensity on a late Neolithic site in central China. Ages of the samples are constrained to be ~3,500–3,000 BCE, a period when available paleointensity data are sparse. We present a total of 64 high-fidelity absolute paleointensities, demonstrating the field varied quickly from ~55 to ~90 ZAm2 between ~3,500–3,000 BCE. Our results record a new archeomagnetic jerk around 3,300 BCE, which is probably non-dipolar origin. The new results provide robust constraints on global geomagnetic models. We calculated a revised Chinese archeointensity reference curve for future application. The variations of absolute and relative paleointensity versus depth show good consistency, reinforcing the reliability of our results. This new attempt of combining absolute and relative paleointenstiy provides a useful tool for future archeomagnetic research

    Weak Lensing of Galaxy Clusters in MOND

    Get PDF
    We study weak gravitational lensing of galaxy clusters in terms of the MOND (MOdified Newtonian Dynamics) theory. We calculate shears and convergences of background galaxies for three clusters (A1689, CL0024+1654, CL1358+6245) and the mean profile of 42 SDSS (Sloan Digital Sky Survey) clusters and compare them with observational data. The mass profile is modeled as a sum of X-ray gas, galaxies and dark halo. For the shear as a function of the angular radius, MOND predicts a shallower slope than the data irrespective of the critical acceleration parameter g0g_0. The dark halo is necessary to explain the data for any g0g_0 and for three interpolation functions. If the dark halo is composed of massive neutrinos, its mass should be heavier than 2 eV. However the constraint still depends on the dark halo model and there are systematic uncertainties, and hence the more careful study is necessary to put a stringent constraint.Comment: 12 pages, 7 figures, references added, minor changes, accepted for publication in Ap

    Renormalized One-loop Theory of Correlations in Disordered Diblock Copolymers

    Full text link
    A renormalized one-loop theory (ROL) is used to calculate corrections to the random phase approximation (RPA) for the structure factor \Sc(q) in disordered diblock copolymer melts. Predictions are given for the peak intensity S(q⋆)S(q^{\star}), peak position q⋆q^{\star}, and single-chain statistics for symmetric and asymmetric copolymers as functions of χN\chi N, where χ\chi is the Flory-Huggins interaction parameter and NN is the degree of polymerization. The ROL and Fredrickson-Helfand (FH) theories are found to yield asymptotically equivalent results for the dependence of the peak intensity S(q⋆)S(q^{\star}) upon χN\chi N for symmetric diblock copolymers in the limit of strong scattering, or large χN\chi N, but yield qualitatively different predictions for symmetric copolymers far from the ODT and for asymmetric copolymers. The ROL theory predicts a suppression of S(q⋆)S(q^\star) and a decrease of q⋆q^{\star} for large values of χN\chi N, relative to the RPA predictions, but an enhancement of S(q⋆)S(q^{\star}) and an increase in q⋆q^{\star} for small χN\chi N (χN<5\chi N < 5). By separating intra- and inter-molecular contributions to S−1(q)S^{-1}(q), we show that the decrease in q⋆q^{\star} near the ODT is caused by the qq dependence of the intermolecular direct correlation function, and is unrelated to any change in single-chain statistics, but that the increase in q⋆q^{\star} at small values of χN\chi N is a result of non-Gaussian single-chain statistics.Comment: 16 pages, 13 figures, submitted to J. Chem. Phy
    • 

    corecore