12 research outputs found

    Security Supports for Cyber-Physical System and its Communication Networks

    Get PDF
    A cyber-physical system (CPS) is a sensing and communication platform that features tight integration and combination of computation, networking, and physical processes. In such a system, embedded computers and networks monitor and control the physical processes through a feedback loop, in which physical processes affect computations and vice versa. In recent years, CPS has caught much attention in many different aspects of research, such as security and privacy. In this dissertation, we focus on supporting security in CPS and its communication networks. First, we investigate the electric power system, which is an important CPS in modern society. as crucial and valuable infrastructure, the electric power system inevitably becomes the target of malicious users and attackers. In our work, we point out that the electric power system is vulnerable to potential cyber attacks, and we introduce a new type of attack model, in which an attack cannot be completely identified, even though its presence may be detected. to defend against such an attack, we present an efficient heuristic algorithm to narrow down the attack region, and then enumerate all feasible attack scenarios. Furthermore, based on the feasible attack scenarios, we design an optimization strategy to minimize the damage caused by the attack. Next, we study cognitive radio networks, which are a typical communication network in CPS in the areas of security and privacy. as for the security of cognitive radio networks, we point out that a prominent existing algorithm in cooperative spectrum sensing works poorly under a certain attack model. In defense of this attack, we present a modified combinatorial optimization algorithm that utilizes the branch-and-bound method in a decision tree to identify all possible false data efficiently. In regard to privacy in cognitive radio networks, we consider incentive-based cognitive radio transactions, where the primary users sell time slices of their licensed spectrum to secondary users in the network. There are two concerns in such a transaction. The first is the primary user\u27s interest, and the second is the secondary user\u27s privacy. to verify that the payment made by a secondary user is trustworthy, the primary user needs detailed spectrum utilization information from the secondary user. However, disclosing this detailed information compromises the secondary user\u27s privacy. to solve this dilemma, we propose a privacy-preserving scheme by repeatedly using a commitment scheme and zero-knowledge proof scheme

    MobiPlay: A Remote Execution Based Record-and-Replay Tool for Mobile Applications

    Get PDF
    The record-and-replay approach for software testing is important and valuable for developers in designing mobile applications. However, the existing solutions for recording and replaying Android applications are far from perfect. When considering the richness of mobile phones\u27 input capabilities including touch screen, sensors, GPS, etc., existing approaches either fall short of covering all these different input types, or require elevated privileges that are not easily attained and can be dangerous. In this paper, we present a novel system, called MobiPlay, which aims to improve record-and-replay testing. By collaborating between a mobile phone and a server, we are the first to capture all possible inputs by doing so at the application layer, instead of at the Android framework layer or the Linux kernel layer, which would be infeasible without a server. MobiPlay runs the to-be-tested application on the server under exactly the same environment as the mobile phone, and displays the GUI of the application in real time on a thin client application installed on the mobile phone. From the perspective of the mobile phone user, the application appears to be local. We have implemented our system and evaluated it with tens of popular mobile applications showing that MobiPlay is efficient, flexible, and comprehensive. It can record all input data, including all sensor data, all touchscreen gestures, and GPS. It is able to record and replay on both the mobile phone and the server. Furthermore, it is suitable for both white-box and black-box testing

    Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice.

    Get PDF
    The S-domain receptor kinase (SRK) comprises a highly polymorphic subfamily of receptor-like kinases (RLKs) originally found to be involved in the self-incompatibility response in Brassica. Although several members have been identified to play roles in developmental control and disease responses, the correlation between SRKs and yield components in rice is still unclear. The utility of transgenic expression of a dominant negative form of SRK, OsLSK1 (Large spike S-domain receptor like Kinase 1), is reported here for the improvement of grain yield components in rice. OsLSK1 was highly expressed in nodes of rice and is a plasma membrane protein. The expression of OsLSK1 responded to the exogenous application of growth hormones, to abiotic stresses, and its extracellular domain could form homodimers or heterodimers with other related SRKs. Over-expression of a truncated version of OsLSK1 (including the extracellular and transmembrane domain of OsLSK1 without the intracellular kinase domain) increased plant height and improve yield components, including primary branches per panicle and grains per primary branch, resulting in about a 55.8% increase of the total grain yield per plot (10 plants). Transcriptional analysis indicated that several key genes involved in the GA biosynthetic and signalling pathway were up-regulated in transgenic plants. However, full-length cDNA over-expression and RNAi of OsLSK1 transgenic plants did not exhibit a detectable visual phenotype and possible reasons for this were discussed. These results indicate that OsLSK1 may act redundantly with its homologues to affect yield traits in rice and manipulation of OsLSK1 by the dominant negative method is a practicable strategy to improve grain yield in rice and other crops

    Defending against Unidentifiable Attacks in Electric Power Grids

    No full text

    Study on the Relationship between Urban Street-Greenery Rate and Land Surface Temperature Considering Local Climate Zone

    No full text
    Relationship exploration between the street-greenery rate (SGR) of different street types and land surface temperature (LST) is of great significance for realizing regional sustainable development goals. Given the lack of consideration of the local climate zone concept (LCZ), Chongqing’s Inner Ring region was selected as a case to assess the relationship between SGR and LST. Firstly, the LST was retrieved based on Landsat 8 imagery, which was calibrated by the atmospheric correction method; next, the street-greenery rates of different streets were calculated based on the semantic segmentation method; finally, street types were classified in detail by introducing LCZ, and the relationship between SGR and LST was investigated. The results showed that: (1) The LST spatial distribution pattern was closely related to human activity, with the high-temperature zones mainly concentrated in the core commercial areas, dense residential areas, and industrial cluster areas; (2) The average SGR values of expressways, main trunk roads, secondary trunk roads, and branch roads were 21.70%, 22.40%, 24.60%, and 26.70%, respectively. The level of SGR will decrease when the street width increases; (3) There is a negative correlation between the SGR and the LST in most streets. Among them, the LST of secondary trunk roads in low-rise and low-density built-up areas with a south-north orientation had a strong negative correlation with the SGR. Moreover, the wider the street, the higher the cooling efficiency of plants. Specifically, the LST of streets in low-rise and low-density built-up areas with south-north orientation may decrease by 1°C when the street-greenery rate is increased by 3.57%
    corecore