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ABSTRACT

A cyber-physical system (CPS) is a sensing and communication platform that
features tight integration and combination of computation, networking, and
physical processes. In such a system, embedded computers and networks
monitor and control the physical processes through a feedback loop, in which
physical processes affect computations and vice versa. In recent years, CPS
has caught much attention in many different aspects of research, such as
security and privacy. In this dissertation, we focus on supporting security in CPS
and its communication networks.

First, we investigate the electric power system, which is an important CPS in
modern society. As crucial and valuable infrastructure, the electric power system
inevitably becomes the target of malicious users and attackers. In our work, we
point out that the electric power system is vulnerable to potential cyber attacks,
and we introduce a new type of attack model, in which an attack cannot be
completely identified, even though its presence may be detected. To defend
against such an attack, we present an efficient heuristic algorithm to narrow
down the attack region, and then enumerate all feasible attack scenarios.
Furthermore, based on the feasible attack scenarios, we design an optimization
strategy to minimize the damage caused by the attack.

Next, we study cognitive radio networks, which are a typical communication
network in CPS in the areas of security and privacy. As for the security of
cognitive radio networks, we point out that a prominent existing algorithm in
cooperative spectrum sensing works poorly under a certain attack model. In
defense of this attack, we present a modified combinatorial optimization
algorithm that utilizes the branch-and-bound method in a decision tree to identify
all possible false data efficiently.

In regard to privacy in cognitive radio networks, we consider incentive-based
cognitive radio transactions, where the primary users sell time slices of their
licensed spectrum to secondary users in the network. There are two concerns in
such a transaction. The first is the primary user's interest, and the second is the
secondary user's privacy. To verify that the payment made by a secondary user
is trustworthy, the primary user needs detailed spectrum utilization information
from the secondary user. However, disclosing this detailed information
compromises the secondary user's privacy. To solve this dilemma, we propose a
privacy-preserving scheme by repeatedly using a commitment scheme and
zero-knowledge proof scheme.
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Chapter 1

Introduction

A cyber-physical system (CPS) is a sensing and communication system that offers tight

integration and combination of computation, networking and physical processes [26, 27,

28, 49, 53, 54]. CPS mainly consists of two components: a physical system and a cyber

system. Typically, embedded computers and sensors in the physical system collect mea-

surements that reflect the current state of the physical system, and then send them to the

cyber system through communication networks in real time. At the same time, the cyber

system processes the received measurements and obtains the status of the physical sys-

tem. Based on the processing results, the cyber system responds to the physical system

in real time by sending directive instructions through communication networks, achieving

better performance, or maintaining system stability.

CPS plays an important role in our society, and can be found in many areas, such

as aerospace, automobiles, chemical processing, civil infrastructure, energy, healthcare,

manufacturing, transportation, entertainment, and consumer appliances. Due to its im-

portance, CPS and its communication networks inevitably become the targets of attackers

andmalicious users. To launch an attack in a CPS, an adversary may physically break into

the physical system and comprise the data acquisition component, such as the embedded

computers and sensors, attack the data processing component in the cyber system, or

hack into the data transmission component, i.e., the communication networks. Therefore,
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to protect a CPS from attacks, security measures have to be taken in all three aspects

of the CPS: data acquisition, data transmission, and data processing. In this sense, we

have to protect both the CPS itself, and its communication networks with consideration

at two distinct levels. First, we have to secure all components in the system, including

the data acquisition components, data processing components, and the communication

networks, or at least those important nodes in the system. It is important to guarantee that

such an attack cannot be easily launched, if not made completely impossible. Second,

we have to take measures to respond to an attack if it does happen, such as detecting

the presence of the attack, pinpointing the attacked components, and taking appropriate

countermeasures.

Recently, CPS has caught much attention in the research community, especially in the

areas of security and privacy:

Security. CPS security can be roughly be divided into the following three major as-

pects. The first is sensing security, including both hardware security and software security

of the sensors in the physical system. For each sensor, the sensor itself, i.e., the hard-

ware, must be physically secure, without physical damage or malfunctioning. At the same

time, the software running on each sensor must be secure. For instance, each software

should be securely loaded, maintained, and verified. The second aspect is cyber secu-

rity, including communication security and computing security. CPS is networked, which

not only enables data fusion and delivery but also allows coordinate response actions.

Therefore, the communication, including that among sensors and that between the phys-

ical system and the cyber system, must be secure. For computing security, people are

concerned with data integrity and processing correctness. That is, the results of data pro-

cessing must be trustworthy. The third aspect is control security. That is, the access to

each entity in CPS must be authorized.

Privacy. CPS and its communication networks usually involve in many entities, in-

cluding human beings and companies, and sensors continuously collect data about them.

CPS privacy mainly consists of two parts. The first is identity privacy, such as whether

3



an entity participates in a CPS or communication network. The other is data privacy. The

data collected by sensors may reveal sensitive information about human beings and cor-

porations. For instance, smart meters in a power system can be used to infer household

activities.

This dissertation focuses on the security and privacy of CPS, including its communi-

cation networks, which is an important branch of the broad research area of cybersecu-

rity. As we can see, CPS security and privacy is a large area, and it is challenging to

cover all aspects of this area. In this dissertation, we aim to use some typical CPS and

communication networks, i.e., electric power systems and cognitive radio networks, as

examples to demonstrate some typical problems and corresponding solutions. We hope

that our work can shed light on this area and provide future guidance to researchers.

Specifically, we present three security and privacy works for CPS and its communication

networks. An overview of the dissertation is shown in Figure 1.1. First, we introduce a

potential cyber attack in an important cyber system, i.e., the electric power system (EPS),

in the cyber system domain, and propose efficient countermeasures to defend against

such attacks. Next, we present a security support scheme in cognitive radio networks

(CRNs), which serve as a typical communication network in CPS. Finally, we propose a

privacy-preserving mechanism for spectrum transactions in cognitive radio networks. In

the following, we will briefly state each problem, and describe the contribution of each

work.

Physical SystemCyber System Communication Networks

Security: EPS
Privacy: CRN

Security: CRN

Figure 1.1: Overview of the dissertation.
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1.1 Security in Electric Power Systems

An electric power system is an infrastructure network that distributes electricity from elec-

tric power generators to customers through transmission lines. It consists of several dif-

ferent components including power generation stations, transformers, transmission sta-

tions, distribution stations, transmission lines, and consumers. Generation stations pro-

duce electric power in variety of ways, such as water plants, nuclear plants, coal plants,

wind farms, solar, tidal, and geothermal power stations. Transformers can either increase

or decrease the voltage levels for efficient transmission to end users. Transmission sta-

tions transmit electricity to distribution stations, through high-voltage transmission lines,

while distribution stations distribute electricity to power consumer homes through safer,

low-voltage transmission lines, which are not efficient over large distances.

An electric power system is something that people cannot live without in the modern

era. As a crucial component of our infrastructure in society, its security is of great im-

portance. An electric power system may be at risk from not only natural disasters, but

also malicious attacks. Active attack scenarios demand our attention and preparation in

advance to cope with them effectively. For example, on March 13, 1989, a powerful solar

wind storm left six million people in the Canadian province of Quebec without power for

more than 9 hours [2, 23], forcing the power company to implement various mitigation

strategies to recover proper power distribution.

An electric power system is usually monitored and managed by a Supervisory Control

And Data Acquisition (SCADA) system installed at the control center. The SCADA sys-

tem collects real-time data through meters and sensors installed at important locations

throughout the power system, including power injection, voltage, current, circuit breaker

status, phase shifting, and transformer settings. Normally, a state estimator in the SCADA

system processes the collected data, and obtains the current status of the entire electric

power system. Then, the SCADA system makes operation adjustments to the electric

power system in real time, according to the current status of the entire system. This pro-

5



cess happens periodically, usually once every half hour, but can repeat as often as every

ten of seconds!

1.1.1 Problem Statement

The most commonly used state estimators in SCADA systems are variants of the least

square estimation. However, it is only possible to obtain an approximation of the real

status of the electric power system due to two factors. The first is that the collected data

may have errors, and the second is that there may be redundant data for the sake of

reliability. Therefore, an estimator strives to find an estimation based on the collected

data, which is closest to the real status of the system. Suppose that some data have

large measurement errors due to a device malfunction, or some data are compromised

by attackers. In either case the state estimator will obtain an incorrect estimation for the

electric power system if it cannot identify and remove this ``bad'' data. As a result, SCADA

systems are very likely to make bad operation adjustments to the power system and cause

severe consequences.

The problem we address in this dissertation is three-fold. First, what new potential

cyber attacks does the electric power system face? Second, from the view of an attacker,

how should he launch such an attack with the least amount of effort and resources? Third,

from the view of the control center, if such an attack does take place, how should the

control center of the power system respond in order to minimize the impact of the attack,

or possibly identify the attack with physical verification? The basic intuition behind our

problem is this: on the one hand, an attacker wants to put forth the least amount of

effort necessary to compromise some measurements in the electric power system such

that these compromised measurements cannot be easily identified and removed by the

control center, misleading the control center to make bad operations. On the other hand,

the control center itself may not be able to identify the attack, but it still wants to find a

way to respond to the attack to minimize the damage.
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1.1.2 Contributions

We are the first to propose the concept of unidentifiable attacks in electric power systems.

These are attacks in which the attack may be detected, but cannot be identified reliably by

the control center. We demonstrate the feasibility of these types of attacks, and show that

an unidentifiable attack requires the attacker to compromise a smaller number of meters,

when compared with previously known attacks, and can still confuse the control center

about the real state of the power system. In defense of this type of attacks, we propose

a heuristic algorithm to narrow down the attack region and then enumerate all feasible

attack cases. Based on all the feasible cases, we provide an optimization strategy to

minimize the damage of the attack. We formulate the optimization strategy as a nonlinear

programming problem, and solve it using a standard optimization package. Additionally,

we provide an algorithm that may be used by a savvy attacker, that can reveal the regions

requiring less attack resources, and an algorithm to be used by the control center that

can determine the best set of meters for physical verification in order to eliminate the

highest number of feasible attack cases. We have evaluated our optimization strategy

with convincing results through simulation, and we present those results in our work.

1.2 Security in Cognitive Radio Networks

Cognitive radio networks play an important role in CPS as a typical communication net-

work. Cognitive radio networks have created an efficient communication paradigm to en-

hance the utilization of the wireless spectrum. Within the traditional spectrum regulation

framework, spectrum bands are exclusively assigned to wireless services by the Fed-

eral Communications Commission (FCC), resulting in inefficiency of spectrum utilization

spatially and temporally. According to the FCC's statistics, the utilization of the licensed

spectrum varies from 15% to 85%. The FCC has also designated a few unlicensed spec-

trum bands, such as the industrial scientific and medical (ISM) bands. With rapid growth
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of wireless services, these unlicensed spectrum bands are filling up fast. Thus, the ma-

jority of the wireless spectrum is licensed but under-utilized, and the unlicensed spectrum

is over-crowded due to the rapid increase of wireless services.

Cognitive radio networks solve the above dilemma intelligently by allowing unlicensed

users to opportunistically access the licensed bands providing that they don't interfere

with licensed users. Typically, a cognitive radio network consists of two types of users:

primary users (also called licensed users) and secondary users (also called unlicensed

users). The secondary users are capable of sensing and adapting to their spectral en-

vironment. Specifically, by carefully sensing the primary user's presence and adjusting

their own transmission to times when the primary user is idle, the secondary users can

utilize licensed spectrum for transmission and therefore can dramatically improve spec-

tral efficiency. When the primary user is present, the secondary user can either shut off

their transmission or adjust their transmission parameters to guarantee an acceptable

performance for the primary user.

A key component of a cognitive radio network is spectrum sensing, which enables

secondary users to continuously monitor the spectrum and detect the presence of the

primary user. Among a variety of spectrum sensing approaches, cooperative spectrum

sensing has earned a good reputation in improving the accuracy of primary user detection.

In cooperative spectrum sensing, a set of secondary users is selected to share the sensing

results with each other and make a cooperative decision on the presence of the primary

user. Compared to a single user's sensing, cooperative sensing is more accurate and

trustworthy.

1.2.1 Problem Statement

Though cooperative spectrum sensing can improve the accuracy of primary user detec-

tion, it opens a window for malicious users and attackers, who may remotely or physically

capture some secondary users and manipulate their sensing reports simultaneously. For
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example, a selfish secondary user could purposely manipulate his own sensing reports

and/or others' sensing reports, and create the illusion that the primary user is present

while it is actually idle, so that it can grasp the unused licensed spectrum selfishly.

The problem we want to address is how to recognize and pinpoint compromised data,

and make a correct sensing decision under an attack. We note that a recent a framework

called IRIS [38] can be used to iteratively run the largest normalized residual method to

remove the ``bad'' data and obtain the final sensing decision. The underlying assumption

of this framework is that the data with the largest normalized residual is most likely com-

promised. This assumption, however, is not always true. We find that IRIS works poorly

under a special type of attack, which we name cooperative attacks. In a cooperative at-

tack, the attacker compromises some secondary users and manipulates their readings

simultaneously such that these data themselves are self-consistent. Our goal is to design

an efficient algorithm to defend against cooperative attacks such that it can complement

IRIS.

1.2.2 Contributions

In this work, we propose and design a new type of attacks in cooperative spectrum sens-

ing, called cooperative attacks, in which an attacker injects self-consistent false data to

multiple secondary users simultaneously. We illustrate that the existing approach IRIS

works poorly under such an attack even though it can detect the presence of the attack.

In defense of this attack, we propose a modified Combinatorial Optimization Identification

(COI) algorithm that scans a decision tree with the branch-and-bound method to obtain

all possible attack cases. We argue that these attack cases are equally possible, and

the uncertainties can only be narrowed down with extra information. We demonstrate the

feasibility of the attack and evaluated our algorithm with intensive simulations.
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1.3 Privacy in Cognitive Radio Transaction

As mentioned in Section 1.2, the cognitive radio network technology can improve the

utilization of spectrum resources through dynamic spectrum sharing among primary users

and secondary users. To motivate a primary user to share its licensed spectrum with

other secondary users, it is reasonable for secondary users to provide the primary user

with monetary compensation. We call this a cognitive radio transaction, in which each

secondary user pays the primary user a fee according to when and for how long the

former utilizes the licensed spectrum owned by the latter.

1.3.1 Problem Statement

In a cognitive radio transaction, there are two concerns regarding the primary user and

the secondary user, respectively. From the view of the primary user, the top concern is

about whether its interest, i.e., the payment received from the secondary, is correct. To

verify payment correctness, the primary user usually needs detailed spectrum utilization

information about the secondary user. From the view of the secondary user, privacy is

the number one concern. Unfortunately, disclosing detailed utilization information to the

primary user inevitably compromises the secondary user's privacy, such as usage pat-

terns, active periods, and data volume. We strive to protect the primary user's interest,

while at the same time preserving the secondary users' privacy.

1.3.2 Contributions

To solve this dilemma, we are the first to propose a novel privacy-preserving mechanism

for cognitive radio transactions. To the best of our knowledge, none of existing work

has addresses the secondary user's privacy. Our mechanism not only preserves the

secondary users' privacy, but also protects the primary user's interest. By employing a

commitment scheme, and a zero-knowledge proof algorithm, the secondary user never

sends any utilization information to the primary user in plain text. Rather, the utilization
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information is sent in the form of commitments that do not disclose any sensitive informa-

tion. The secondary user also provides zero-knowledge proofs for the payment. With the

commitments and proofs, the primary user is able to verify the correctness of the payment

without requiring any detailed utilization information in plain text. We have implemented

our privacy-preserving scheme and evaluated its performance. Our results show that it

only takes about 100 milliseconds for one utilization instance.

1.4 Organization

The dissertation is organized as follows. In Chapter 2, we introduce a new cyber attack

in power systems and propose a heuristic approach to protect power systems from this

new attack. In Chapter 3, we present the concept of cooperative attacks in cognitive radio

networks and countermeasures to defend against such attacks. In Chapter 4, we point

out the necessity of a privacy-preserving mechanism in cognitive radio transactions, and

design and implement such a mechanism. Finally, Chapter 5 concludes the dissertation,

and foresee some future work.
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Chapter 2

Defending Against Unidentifiable

Attacks in Electric Power Systems

Security is an important aspect of research in cyber-physical systems (CPS1). Though

different CPS may have different security requirements and concerns, they still have a lot

in common. In this chapter, we use a crucial CPS in our society, the electric power system,

as a typical example to address potential attacks in data security of CPS. We believe that

our work can be generalized to other CPS and contribute to the research community in

this field.

2.1 Introduction

The electric power system is a distribution network that connects the electric power gen-

erators to customers through transmission lines, and its security and reliability are critical

to society. In order to enable its safe and reliable operation, the power system is moni-

tored continuously by smart meters installed at important locations throughout the power

system. The meters take various measurements, including real/reactive power injections

on buses and real/reactive power flows on transmission lines. Such data is then fed to
1In this dissertation, CPS is treated as both singular and plural.
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the control center within the Supervisory Control And Data Acquisition (SCADA) system.

Using the collected information, the control center estimates the state variables, which are

the voltage amplitudes and phases on buses, and thenmakes corresponding adjustments

to stabilize the power system.

To obtain reliable state estimates, it is essential for the control center to be fed re-

liable and accurate meter measurements. However attackers may compromise meter

measurements and send malicious data to the control center, thus misleading the control

center to make bad decisions that may cause severe consequences to the power sys-

tem. Researchers have developed various techniques to detect bad data measurements

[3, 36, 41, 52, 57], most of which are based on measurement residuals.

However, Liu et al. [34] has presented an undetectable false data injection that can

defeat all the detection techniques based on measurement residuals. Their simulation

results indicate that for medium size power system (e.g. IEEE 30-bus system), the at-

tackers may need to compromise 60 to 75% of all meters before they can succeed in

launching a random false data injection attack. However, an attacker may either have

limited attack resources or only limited access to some meters. Thus, we are interested

in exploring if there are other types of attacks that require fewer meters.

In this chapter, we focus on unidentifiable attacks [45, 46], which are different from

undetectable attacks discussed in [34]. In unidentifiable attacks, the control center can

detect that there are bad or malicious measurements, but it cannot identify which meters

have been compromised. As a result, the attacker does not need to manipulate as many

meters for unidentifiable attacks as when he is launching undetectable attacks. Under an

unidentifiable attack, the control center has no way to simply eliminate some ``bad'' data

and thus get accurate state estimates. However, the control center has to make a power

operation decision, no matter good or bad, in response to the attack. We argue that a

good decision during such an attack is one that minimizes the total cost which includes

the power generation cost and the damage cost caused by the attack.

Our main contributions in this work are as follows:
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1. We are the first to propose the unidentifiable attack in a power system. We demon-

strate the feasibility of this type of attacks. An adversary can launch an unidentifiable

attack by compromising a smaller number of meters compared with the previously

proposed attacks while at the same time confuse the control center on what really

happens.

2. We propose a heuristic algorithm to enumerate all feasible cases under an uniden-

tifiable attack. The previous classic ``bad data detection'' algorithms do not work for

this attack scenario. Our algorithm is the first to resolve the problems of the previ-

ous algorithms. It also significantly reduces the possible solution searching space

compared with the brute force approach. We show through empirical study that the

algorithm can efficiently find all possible attacks.

3. Enumerating possible attacks is not equivalent to locating the exact attack. To de-

fend against all possible attack scenarios, we also propose a strategy to minimize

the average damage to the system. We formulate the problem as a nonlinear pro-

gramming problem and solve it through a standard optimization package.

4. From the viewpoint of an attacker, he is interested in finding good attack regions to

attack such that the number of meters he needs to compromise to launch an uniden-

tifiable attack is minimized. In order to find such regions, we propose a heuristic al-

gorithm that can reveal good attack regions by performing column transformations

on the Jacobian matrix of a power system.

5. We propose an algorithm that a control center with limited resource can use to iden-

tify the meters they should verify during an unidentifiable attack.

6. We analyze our system in AC model, which is nonlinear and doubles the number

of variables compared to the DC model. The recent security investigations of the

power system, such as [34, 71, 25, 24], are all based on DC model. Although DC

model can be representative of the power system, AC model can capture more
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subtleties and is more complicated and realistic to describe a power system. We

believe this is the first piece of work to carefully examine the attacks and solutions

in realistic AC model. The formulation and optimization can be used as a basis for

future work.

The rest of the chapter is organized as follows. Section 2.2 is the related work. In

Section 2.3, we demonstrate unidentifiable attacks, and show that how an attacker can

find good attack regions in a power system. In Section 2.4, we formulate an optimization

framework for the control center, given an unidentifiable attack. In Section 2.5, we propose

algorithms to find all feasible attack cases. In Section 2.6, we bring up an interesting

problem that how the control center reveals the real attack case if it has some limited

resources to verify some meters. We evaluate our proposed enumerating algorithms and

optimization strategy in Section 2.7 and conclude this work in Section 2.8. Since many

nomenclatures are used in this chapter, they are listed together here for easy reference.

Indices:
i & j: bus index

k: feasible case index

g: generator index

Sets, vectors, and elements:

L: set of load buses

G: set of generator buses

A: set of all meters

z: the vector of all meter measurements

za : the measurement vector under attack

P : set of protected meters

D: set of bad meters

B: set of all buses, B = L ∪G

bi: bus i
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T : set of transmission lines

ti_j : transmission line between buses i and j

ti_∗: transmission lines incident to bus i

Constants:
m: the total number of meters, m = |A|

l: the total number of feasible cases

n: the total number of buses, n = |B|

r: the capacity of the attacker

s: the number of meters an operator can verify

Cg: the generating cost of generator g

Cshed,i: the power shedding cost of load bus i

Gij : the conductance between bus i and bus j

Bij : the susceptance between bus i and bus j

PGg,min: the minimal real capacity of generator g

PGg,max: the maximal real capacity of generator g

QGg,min: the minimal reactive capacity of generator g

QGg,max: the maximal reactive capacity of generator g

PLmax
ij : the maximal line capacity between bus i and bus j

PDk,i: the real power demand on bus i in case k

QDk,i: the reactive power demand on bus i in case k

Variables:
x: the vector of state variables

PGg: the real power generated by generator g

QGg: the reactive power generated by generator g

Vi: the voltage amplitude of bus i

θi: the voltage phase of bus i
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PSk,i: the real power shedding of bus i in case k

QSk,i: the reactive power shedding of bus i in case k

Pij : the real power flow between bus i and j

Qij : the reactive power flow between bus i and j

PLij : the power flow between bus i and j

Dshed,k: the total real power shedding cost for case k

2.2 Related Work

To ensure the power system operates correctly, the control center needs to collect mea-

surements to estimate the state variables, and then takes control actions against any

contingency. For a system with n buses and m meters, the state estimates are deter-

mined through the model of z = h(x) + e, where x = (V1, ..., Vn, θ1, ..., θn) is the state

variable vector, z = (z1, ..., zm) is the measurement vector, and e is the measurement

error vector.

Bad measurements, however, may exist due to faulty meters, transmission errors, or

alterations by malicious attackers. Researchers have developed lots of approaches on

bad data detection and identification since 1970's, such as Identification By Elimination

(IBE) [52], Non-Quadratic Criteria (NQC) [36], Hypothesis Testing Identification (HTI) [57],

Combinatorial Optimization Identification (COI) [3, 41]. An early comparative study of the

first three approaches can be found in [37].

Liu et al. [34] has shown that, given the topology and line impedance of a power

system in DC model, an attacker can inject malicious data without being detected by the

control center, since the injected malicious data does not change the residual. Since then,

the undetectable attack has drawn a lot of attention, such as in [25, 71, 72]. In [71, 72],

a specific undetectable attack called the load redistribution attack is analyzed. In [25],

minimum residue energy attack is discussed as well.

The unidentifiable attack considered in this work is different from the undetectable
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attack in that the control center can detect the presence of an attack but cannot identify

which meters have been compromised. This is in fact the concept of nondeducibility [12]

but with an inverse form, in which the attacker maintains the property of nondeducibility.

Our unidentifiable attacks aim to confuse the control center to the extent that it does not

knowwhat the exact demand scenario is and hence needs to rely on a strategy to deal with

such attacks. Compared with undetectable attack, an attacker only needs to manipulate

at most half as many meters to launch an unidentifiable attack as those he needs for an

undetectable attack. The concept of unidentifiable attacks is hence of great value and

more practical, especially for an attacker with limited attack resources. Consequently,

this work complements the research in cyber-physical systems [8, 32, 50, 61, 66, 67].

2.3 Unidentifiable Attacks

The unidentifiable attack in this work is a new type of attack in the power system. Before

we present the formal definition of the unidentifiable attack, we define feasible case for a

power system and make an assumption regarding to the capability of an attacker.

Feasible case: A feasible case for a power system is a vector of all m meter readings

that (1) is consistent with negligible error; and (2) hence can produce a distinct set of state

variables.

We denote the collection of feasible cases by set F. And we assume that an attacker

can at most compromise r meters. Suppose the meter reading vector under an attack is

za. Then the formal definition is:

Unidentifiable Attack: An attack is unidentifiable if the following two conditions are

satisfied: (1) d(za, z) ̸= 0, ∀z ∈ F, where d is a function that returns the number of mis-

match elements between two vectors; (2) there exists a set F′ ⊆ F such that d(za, z′) ≤ r,

∀z′ ∈ F′, and |F′| ≥ 2, where |.| is a function on a set and returns the number of elements

in it.

In the above definition, condition (1) makes sure that the control center can detect the
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presence of an attack; condition (2) guarantees that at least two feasible cases exist to

obfuscate the control center. In the following, we will first further explain the unidentifi-

able attack with concrete examples. Then, we will discuss the attack strategy from an

attacker's viewpoint.

2.3.1 Unidentifiable Attack Examples

To further understand the unidentifiable attack, let us consider an ideal case where the

measurements have no error except those which are manipulated by an attacker. Sup-

pose there are m = m0 +m1 +m2 measurements which can be divided into three sets,

M0, M1 and M2, with cardinalities m0, m1 and m2 respectively. Assume that m1 ≤ r,

m2 ≤ r, and an attacker has manipulated the set of measurements inM1. Obviously, the

vector of measurements is not a feasible case, that is, the control center can detect the

presence of an attack. Let us further assume that, the measurementsM0 ∪M1 alone are

consistent and make the whole system observable2, so are the measurementsM0 ∪M2.

In such a scenario, the control center can conclude that either set M1 or set M2 is com-

promised. However, the control center has no way to determine the exact set that has

been compromised. We call such an attack unidentifiable, since the attack on set M1

confuses the control center to believe that either set M1 or set M2 is compromised. We

say this attack has two feasible cases: one is determined by M0 ∪M1, and the other is

determined by M0 ∪M2.

In the power system, all meters are interactive to some extent. Therefore, changing

one meter usually requires changes of many other meters in order to make the changes

consistent. From the view of an attacker, he intends to change as few meters as possible

to generate an unidentifiable attack. In this work, we focus on two types of unidentifiable

attacks, which can lead to bad consequences. One is load redistribution attack (Type I),

in which the attacker obfuscates the control center whether the power demands on some
2A set of measurements is said to make the system observable if the states of all the buses can be

determined with these measurements.
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load buses are redistributed, while the total power demand is unchanged. The other is

load increase attack (Type II), in which the attacker obfuscates the control center whether

the demand on a certain bus is increased, while the demands for other load buses remain

the same. Compared to random changes on meter readings that may require to check

multiple times before an unidentifiable attack with bad consequences can be obtained,

these two types of attacks empirically require less effort from the attacker.

Let us consider two simple examples that illustrate the two types of unidentifiable

attacks above. To simplify our discussion, we use DC model in our examples, but we

consider AC model in the rest of the work. Figure 2.1 is a three bus power system.

On each bus, there is a power injection meter; on each transmission line, there are two

power flow meters, with one at each end of the line. In DC model, there is no resistance

on transmission lines but only susceptance. The susceptance between bus 1 and bus 2

is 280 (we omit the unit, and thereafter); that between bus 2 and bus 3 is 70; and that

between bus 1 and bus 3 is 140. Suppose the load on bus 2 is 21, and the load on bus 3

is 35. Before any attack, the meter readings are consistent as shown in Figure 2.1.

generator

load bus

2

3

−35(3)

−21(2)

−28(5)
7(6)

−7(7)

56(1)

28(8)

28(4)

−28(9)

1

Figure 2.1: The meter readings before attack. XX(Y) means that meter Y's reading is XX. A
positive value means a power flow comes out of a bus, while a negative value means a power
flow goes into a bus.

Now suppose r = 4 and an attacker can manipulate meters {2,3,5,9}. The attacker

changes the readings of these four meters to the value shown in Figure 2.2. The whole

set of data is not consistent, and the control center knows that an attack is present. How-
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ever, the readings on meters {1,4,6,7,8} are consistent, and they can determine a set of

state variables, which corresponds to the load vector {bus2, bus3}={21, 35}. The readings

on meters {1,2,3,5,9} are also consistent, while they can determine a different set of state

variables, which corresponds to the load vector {bus2, bus3}={14, 42}. Under this sce-

nario, even though the control center knows that four meters have been compromised,

it has no way to identify which four have been manipulated. The compromised data can

either be meters {2,3,5,9}, or meters {4,6,7,8}. That is, there are two feasible cases. One

is determined by meters {1,4,6,7,8}, which is {56, -21, -35, 28, -28, 7, -7, 28, -28}. The

other is determined by meters {1,2,3,5,9}, which is {56, -14, -42, 24,- 24, 10, -10, 32, -32}.

In this example, the net effect of the attack is to have the control center guess whether

there is a 7 unit load redistribution between bus 2 and bus 3 ({21,35} to {14,42}). To make

this load redistribution undetectable, one has to compromise all nine meters except me-

ter 1, which is beyond the attacker's capability. However, we only need to compromise 4

meters to make this attack unidentifiable.

generator

load bus

2

3

−42(3)

−14(2)

−24(5)
7(6)

−7(7)

56(1)

28(8)

28(4)

−32(9)

1

Figure 2.2: Type I unidentifiable attack,
where meters 2, 3, 5, 9 are compromised
(red ones).

generator

load bus
2

3

−35(3)

−35(2)

−40(5)
5(6)

−7(7)

56(1)

30(8)

28(4)

−28(9)

1

Figure 2.3: Type II unidentifiable attack,
where meters 2, 5, 6, 8 are compromised
(red ones).

Another similar attack is shown in Figure 2.3. In this case, meters {2,5,6,8} are com-

promised corresponding to the load vector {bus2, bus3}={35, 35}. Similarly, the compro-

mised data can either be meters {2,5,6,8}, or be meters {1,4,7,9}. That is, there are two

feasible cases: one determined by meters {1,3,4,7,9} and the other by meters {2,3,5,6,8}.
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In this example, the net effect of the attack is to let the control center guess whether

there is a 14 unit load increase on bus 2 (from 21 to 35). Again, only four meters need

to be compromised to launch this unidentifiable attack, compared to eight meters for the

corresponding undetectable attack.

In each of the example, there are some meters that have the same readings for the

different feasible cases of an unidentifiable attack. With more common readings among

different feasible cases, fewer meters need to be compromised to launch an unidentifiable

attack.

2.3.2 Best Attack Regions for Unidentifiable Attacks

From an attacker's viewpoint, he is interested in finding a region such that he only needs

to compromise as few meters as possible to launch an effective attack, no matter Type I

or Type II attack.

First, we have to find a metric to evaluate an attack region. Assume that an attacker

needs to compromise d meters in a region to shift from one feasible case to another

feasible case, i.e., to launch an undetectable attack. Now we want to know how many

compromised meters are enough to launch an unidentifiable attack in the same region.

We denote it by d′. Regarding r, there are four cases in total, listed in Table 2.1. From

Table 2.1: The number of meters that are enough for an unidentifiable attack (d′), where d is the
number of meters that are required to compromise for an undetectable attack.

r (attacker's capability) d′

r ≥ d− 1 1

d− 1 > r > d/2 d− r

r = d/2 d/2

r < d/2 impossible

the table, we can see that compromising d/2meters is enough to launch an unidentifiable

attack, no matter what the valure of r is (since the attacker can compromise d/2 meters,
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it means r is at least d/2). Thus, we use d′ = d/2 as the metric to evaluate how good an

attack region is.

Therefore, we first need to find the regions that require fewest compromised meters

for an undetectable attack. In [6], Liu et al. proposed a heuristic algorithm for desirable

attack region in DC model, where z = Hx+e and H is fixed; with column transformation of

H matrix, they aimed to find a column vector with the greatest number of zero elements.

However, in our AC model case, there is no such fixed Hmatrix and the relations between

measurements and state variables are non-linear. Instead, we examine the Jacobian ma-

trix ∂h/∂x, denoted by J. Similar to [6], we apply column transformations on the Jacobian

matrix to find a column vector with the greatest number of zero elements, say vector u.

Then, we figure out the rows with non-zero elements in u. Finally the attack region is the

region containing meters i such that ui ̸= 0. The algorithm is summarized as follows.

Algorithm 2.1: Finding the best attack region
1 calculate J at the pre-attack point;
2 u =the column vector in J with most zeros;
3 for each column vector j ∈ J, j ̸= u, do
4 u′ = u+ c· j s.t. ∥u′∥0 is minimized, where c can be any scalar;
5 j = u′;
6 if ∥j∥0 < ∥u∥0, j ∈ J, j ̸= u, then
7 go to line 2;
8 else
9 go to line 10;
10 find the set of meters with indices {i|ui ̸= 0}; the attack region is the region where

these meters are.

Different from H, which is fixed, our Jacobian matrix is different at different starting

points. Here, we assume a simple starting scenario that all voltages are 1 and all phases

are 0, which is a feasible solution to power systems. We examine three IEEE bus systems:

9-bus system, 14-bus system, and 30-bus system. The results are shown in Table 2.2.

As we can see, these attack regions usually are the regions with a leaf node or with fewer

connections to the rest area of a bus system.
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Table 2.2: The best attack regions with the metric d′.

bus system d′ attack region

9-bus
2 bus 1 and bus 4
2 bus 2 and bus 8
2 bus 3 and bus 6

14-bus 2 bus 7 and bus 8
5 bus 4,7,8 and 9

30-bus
2 bus 9 and bus 11
2 bus 12 and bus 13
4 bus 25 and bus 26

2.4 Optimization Strategy

Under an unidentifiable attack, the control center cannot identify which set of meters is

compromised, even though it knows that some meters are compromised. Suppose that

under an unidentifiable attack, the control center finds l feasible cases, i.e., |F ′| = l (we

will present algorithms to find all feasible cases in section 2.5). To reduce the damage

caused by such an unidentifiable attack, the control center has to consider all l feasible

cases, and tries to find a solution such that the damage to the power system is as small

as possible before the set of compromised meters can be identified and eliminated (it is

possible that the attack cannot be identified without sending power engineers to conduct

a physical check).

To evaluate whether a power generation solution is good or not, we need to assess the

potential damage such a solution yields to each of l feasible cases. The damage mainly

includes the followings:

• Power shedding on load buses. There is not enough power supply for load buses

such that some load buses get less power than their demands, which results in the

tripping of circuit breakers to shed some loads;

• Overloading of transmission lines. The power flow on a transmission line may go be-

yond its capacity such that the line trips, possibly resulting in severe consequences,
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e.g., large area blackout;

• Overpowering on load buses. A load bus may be fed more power than its demand,

which can make the power system operate at higher frequency than it can tolerate,

trip certain circuit breakers and cause blackout.

The cost of the whole power system consists of two components: one is related to

the cost of power generation, and the other is related to the cost of damages mentioned

above. Any good power generation solution should avoid overloading and overpowering

scenarios since they both can cause severe consequences. In our strategy that identifies

good power generation solutions under an unidentifiable attack, we propose to avoid any

potential damage caused by overloading and overpowering by including constraints that

prevent overloading and overpowering from occurring. Therefore, we only need to include

the power generating cost and the penalty of load shedding in the overall cost. Since all

l feasible cases are unidentifiable and equally possible in the view of the control center,

it is reasonable to consider the average damage caused by a power generation solution

to all feasible attack cases. We are to find a power generation solution such that the sum

of the generating cost and the average damage caused by load shedding is minimized.

(Please refer to Section 2.1 for nomenclatures.)

min :
∑
bj∈G

CjPGj +
1

l

l∑
k=1

Dshed,k (2.1)

where Dshed,k is defined as follows,

Dshed,k =
∑
bi∈L

Cshed,iPSk,i (2.2)

The constraints are:

(1) Power shedding constraints:

0 ≤ PSk,i ≤ PDk,i, ∀bi ∈ L, 1 ≤ k ≤ l (2.3)
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in which the positive PSk,i guarantees that there is no overpowering.

(2) Power flow and power injection constraints:

n∑
j=1

ViVj(Gijcos(θi−θj)+Bijsin(θi−θj))−PGi+PDk,i−PSk,i = 0, 1 ≤ i, j ≤ n, 1 ≤ k ≤ l

(2.4)

n∑
j=1

ViVj(Gijsin(θi−θj)−Bijcos(θi−θj))−QGi+QDk,i−QSk,i = 0, 1 ≤ i, j ≤ n, 1 ≤ k ≤ l

(2.5)

Pij = −V 2
i Gij + ViVj(Gijcos(θi − θj) +Bijsin(θi − θj)), ∀ti_j ∈ T (2.6)

Qij = V 2
i Bij + ViVj(Gijsin(θi − θj)−Bijcos(θi − θj)), ∀ti_j ∈ T (2.7)

PLij =
√

P 2
ij +Q2

ij (2.8)

(3) Line transmission capacity constraints:

−PLmax
ij ≤ PLij ≤ PLmax

ij , ∀ti_j ∈ T (2.9)

(4) Generator capacity constraints:

PGg,min ≤ PGg ≤ PGg,max, ∀bg ∈ G (2.10)

QGg,min ≤ QGg ≤ QGg,max, ∀bg ∈ G (2.11)

In the above formulation, PDk,i and QDk,i, which are determined by the kth feasible

case, are known. PSk,i and QSk,i are variables. Vi and θi, 1 ≤ i ≤ n, are auxiliary
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variables, which connect other variables via Eq(2.4), Eq(2.5), Eq(2.6), and Eq(2.7). After

solving the minimization problem (we use the free software IPOPT [58]), we will get all

the variables, including PGj , PSk,i, Vi and θi, ∀bj ∈ G, 1 ≤ k ≤ l, 1 ≤ i ≤ n. The control

center can then determine the amount of power generation on each generator and the

amount of power supply on each load bus, and send these quantities as directives to the

corresponding generators and load buses. This is how the control center responds to an

unidentifiable attack.

2.5 Analysis of Unidentifiable Attacks

When an unidentifiable attack occurs, the control center first has to detect the presence

of an attack. One can use any typical bad data detection scheme proposed by previous

work to detect the presence of an attack. Given a power system with n buses and m

meters in AC model, measurements z = (z1, ..., zm) are functions of the state variables

x = (V1, ..., Vn, θ1, ..., θn). That is, z = h(x) + e, where h(x) = (h1(x), ..., hm(x)), are

defined in the following four cases (assume no error, e.g., e = 0):

(i) z is real power injection on bus i:

z =

n∑
j=1

ViVj(Gijcos(θi − θj) +Bijsin(θi − θj)) (2.12)

(ii) z is reactive power injection on bus i:

z =

n∑
j=1

ViVj(Gijsin(θi − θj)−Bijcos(θi − θj)) (2.13)

(iii) z is real power flow from bus i to bus j:

z = −V 2
i Gij + ViVj(Gijcos(θi − θj) +Bijsin(θi − θj)) (2.14)

(iv) z is reactive power flow from bus i to bus j:

z = V 2
i Bij + ViVj(Gijsin(θi − θj)−Bijcos(θi − θj)) (2.15)
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In case of errors or an attack, the detection scheme will compute L2 norm ||z − h(x̂)||2,

where x̂ is the vector of estimated state variables obtained by a least square estimator.

Then the L2 norm is compared with a predefined threshold τ , and an attack is declared

only if ||z− h(x̂)||2 > τ .

Next, the control center should discern if the attack is unidentifiable. It can draw such

a conclusion by enumerating all feasible cases for the attack. It is an unidentifiable attack

if at least two feasible cases exist; otherwise, it is not. In the following, we first make some

assumptions and formulate the case enumerating problem. Then, we describe algorithms

to enumerate all feasible cases, including a brute-force search algorithm and an empirical

method that can speed up the brute-force search. Finally, we analyze the complexity and

performance of the proposed algorithms.

2.5.1 Assumption and Problem Formulation

We assume that the presence of bad measurements does not make the whole system

unobservable, which excludes the scenario of undetectable attacks. And we also assume

that a set of meters, say set P , is protected by the power system operator.

Let set A be the set of all meters and set D be the set of bad meters that the control

center deduces. With the above assumptions, the problem of finding all feasible cases

under an unidentifiable attack can be formulated as follows:

Enumerate all different sets of D such that:

1. The meters in A\D make the whole power system observable, where \ means ex-

cludes;

2. The meters in A\D are consistent; that is, after solving the state estimation for the

power system with meters in A\D, the norm of residuals of these meters is zero or

less than a predefined value τ .

3. |D| ≤ r, where r is the maximum number of meters an attacker can compromise;
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4. D ∩ P = ∅;

5. Different sets of D results in different state variables3.

2.5.2 Enumerating Feasible Cases

Given the assumptions and formulation above, our goal is to find all feasible cases that

satisfy all the constraints. When r is small, we can use brute-force search to find all

feasible cases. However when r is big, the brute-force search becomes very expensive,

since its search time grows exponentially with increasing r. However, if one can identify

an attack region where the compromised meters are located, then the search space can

be reduced and hence the search process can be sped up.

2.5.2.1 Brute-force Search to Enumerate Feasible Cases

When the maximum number of meters that an attacker can compromise, r, is small, we

use brute-force search directly. In a brute-force search, every combination that meets all

the constraints in the problem formulation is examined. The brute-force search algorithm

works as follows.

Algorithm 2.2: Brute-force Search
Input: r, the attacker's capability;

Set A, the set of all meters;
Set P , the protected set.

Output: Set F that contains all feasible sets of D.
1 F = ∅;
2 for i=1, r do
3 Check every of

(
m
i

)
bad data combinations, D, except those are supersets of

any set in F ;
4 if D ∩ P = ∅ then
5 if A\D pass the residual test then
6 put the bad data set D into F ;

3This condition is to avoid finding duplicated feasible cases, since it is possible that two different sets of
meters produce the same set of state variables.
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In the above algorithm, the brute-force search actually does not check every combi-

nation, as shown in line 3. It does not check the combinations that have already been

covered by previous combinations that are included in set F. If we have already found a

feasible case with a set of meter readings D being declared as bad, then we do not need

to check any other sets of meter readings D′, where D′ ⊃ D.

2.5.2.2 Locate Attack Region and Enumerate Feasible Cases

When r is large, the brute-force search approach becomes expensive. As the compro-

mised meters in an unidentifiable attack are typically clustered, we are to identify the at-

tack region and then enumerate feasible cases within the attack region. Such a strategy

greatly reduces the search space and hence the search time.

To identify the attack region, we can use existing algorithms based on Identification

by Elimination (IBE), such as those discussed in [52]. Though these algorithms cannot

exactly identify all the bad data, especially those interacting ones, they can give us some

clues about the attack region.

We propose a three-step scheme for enumerating feasible cases under an unidentifi-

able attack. In our first step, we use the IBE algorithm with the goal not to identify all bad

data but to roughly locate the attack region. The IBE algorithm first runs the least square

estimator and then deletes the measurement with the largest residual, until the norm of

the residuals is less than a pre-defined threshold τ . The IBE algorithm works as follows:

Algorithm 2.3: IBE (Step 1)
1 D = ∅;
2 A = { all meters };
3 while the norm of residuals of meters in A\D ≥ τ do
4 Put the meter with the largest residual in D;
5 Run state estimation with A\D;
6 Find the meter that has the largest residual;
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After executing Step 1, we identify a set of meters, D. We then check the locations

of the meters in set D, and hence roughly deduce where the attack region is. We define

the attack region, R, which is a subgraph of the whole power system, using the following

algorithm:

Algorithm 2.4: Attack Region Identification (Step 2)
1 R = ∅;
2 for meter a ∈ D do
3 if a is on bus i then
4 R = R ∪ bi ∪ ti_∗
5 else if a is on line ti_j then
6 R = R ∪ bi ∪ bj ∪ ti_j

The rationale for the above algorithm is as follows. If a meter is on a bus, its reading

(real/reactive) is the summation of all power flows (real/reactive) incident to that bus ac-

cording to Eq(2.4) and Eq(2.5). If a meter is on a branch, its reading is a function of the

state variables of the two end buses according to Eq(2.6) and Eq(2.7). For interacting bad

data, the bad data nearby a good one can make the good one has the largest residual.

Thus, if a data is eliminated in Step 1, it is either because the data is bad or its nearby

data is bad. Therefore, in the attack region, we include both the data with largest residual

and its neighbors that affect it directly. That is, if a meter on a bus is declared bad, we

include both that bus and all the branches incident to that bus into the attack region; if a

meter on a branch is declared bad, we include that line and two end buses into the attack

region. Figure 2.4 illustrates how the attack region is defined.

Therefore, by looking at the region where the bad data are located, we can roughly

identify the attack region. However, we cannot guarantee that the attack region defined

above includes all the bad meters, which is summarized in the following claim.

Claim: By eliminating the measurement with the largest residual until the remaining

ones are consistent, the attack region defined above is not guaranteed to include all bad

data.
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Figure 2.4: Attack region illustration. On the left, a meter on bus 3 is declared bad; on the right,
a meter on the branch between bus 1 and bus 2 is declared bad.

Proof: Suppose the whole system has n buses withmmeasurements, then the system

has 2n− 1 state variables. The adversary has modified m− 2n+ 1 measurements, and

the remaining 2n− 1 measurements are all critical and can make the system observable

(and hence satisfy Assumption 1). Now the 2n−1measurements can give a deterministic

solution for the state variables, but any 2n−2measurements of the same set cannot. Now

let us select 2n − 2 measurements out of the set of 2n − 1 measurements, and denote

the remaining one as R. The 2n− 2 measurements yield many feasible solutions of state

variables for that particular power system. We select one of the feasible solutions, which is

different from the one obtained using the set of 2n−1measurements. The adversary then

modify them−2n+1measurements based on this selected feasible solution. Obviously,

the largest residual will then occur on the meter that measures R. After eliminating R,

the rest of the measurements are consistent. Step 2 only identifies the attack region as

a small neighborhood around R and hence does not include all bad data in the set which

contains the m− 2n+ 1 readings. 2

Remark: The example given in the above proof is an extreme case. Consider a power

system in AC model, there are four meters on each transmission line, with two at each

end of the line, one for real power flow, the other for reactive power flow; and there are

two injection meters on each bus, one for real power and the other for reactive power. To
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produce the above attack, the attacker has to compromise more than 2/3 of all meters4.

If the attacker has that much attack resources, he may be able to launch an undetectable

attack which may produce larger damages and hence he may not have the incentive to

launch an unidentifiable attack.

After obtaining the attack region, we will do a brute-force search in it. However, this

brute-force search algorithm is different from Algorithm 2.2, since we need to consider

the case that the detected attack region does not include all bad data as proved in the

above claim. The algorithm is as follows.

Algorithm 2.5: Brute-force Search in the attack region (Step 3)
Input: R, the detected attack region with |R| meters;

r, the attacker's capability;
Set A, the set of all meters;
Set P , the protected set.

Output: A set F that contains all feasible sets of D.
1 F = ∅;
2 for i← 1 to r do
3 for every of

(|R|
i

)
bad data combination, D, except those are supersets of any

set in F do
4 if D ∩ P = ∅ then
5 if A\D pass the residual test then
6 put D into F
7 else
8 run IBE with A\D and update D by including the data with largest

residual until passing residual test;
9 put D in F if |D| ≤ r;

Although the detected attack region may not include all bad data, line 8 in Step 3 is

able to find bad data outside of the detected attack region. The three-step algorithm will

usually find all the feasible cases.
4For a n bus system with |T | branches, there are 2n + 4|T | meters. The attack has to compromise a

portion of 2n+4|T |−(2n−1)
2n+4|T | > 2

3
, since |T | is usually greater than n.
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2.5.3 Performance Analysis

Given a power system withm measurements and an attacker with capability r, the brute-

force search (Algorithm 2.2) is O(
(
m
r

)
). This is huge when m and r are both large.

Therefore, Algorithm 2.2 only works for either a small power system or an attacker with

very limited capability.

When Algorithm 2.2 is not applicable, we should utilize the three-step scheme

(Algorithm 2.3 - 2.5). Suppose there are |R| meters in the located attack region R, then

the complexity is O(
(|R|

r

)
), which is much smaller than that of brute-force search, given

that the compromised measurements in an unidentified attack is usually clustered and |R|

is much less thanm. If the attack region R is not connected, i.e., there are more than one

attack regions, we can apply Algorithm 2.3 - 2.5 on each connected attack region.

Our method is better than all existing bad data detection methods in power system un-

der an unidentifiable attack, since they cannot work in case of such attack. In an uniden-

tifiable attack, there are more than one feasible cases. All existing methods can only find

one solution, which means that they can at most find one feasible case. The attacker is

always able to manipulate a set of measurements such that the set of bad measurements

identified by an existing method is different from the set of manipulated measurements.

Therefore, none of them can work in the scenario of an unidentifiable attack. In this

sense, our method has already greatly eliminated false positive (FP) and false negative

(FN) which all existing methods have. However, since our algorithms are heuristic, they

may still have FP and FN. If the detected attack region contains all the bad data, there

will be no FP or FN. Even if the detected attack region does not contain all the bad data,

Algorithm 2.5 is able to find some bad data outside of the detected attack region. We

believe that these two facts will reduce the rate of FP and FN. As shown in the evaluation

in Section 2.7, there is no FP or FN in dealing with the six unidentifiable attacks created

with Matpower [77].
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2.6 Direct Meter Verification to Eliminate Feasible Cases

In this section, we investigate how a control center with limited resources for meter reading

verification should strategize such that it can either identify a particular feasible case as

the real attack scenario or reduce the number of feasible cases. By limited resources,

we mean the maximum number of meters that the control center can verify, physically or

remotely.

Suppose the control center has found l feasible cases given an unidentifiable attack.

Now the control center has limited resources to verify only a small number of meters, say

smeters. From the perspective of the control center, it is interested in either finding which

one of l feasible cases is the real attack case, or excluding as many feasible cases from

the l feasible cases. The issue the control center faces is which meters should be chosen

for reading verification in order to maximize its interest.

The problem is formulated as follows. Suppose there are m meters in the power

system. For each feasible case, we have a set of all meter values; we call them feasible

values. Of course, some of these feasible valuesmay be exactly the same as the readings

collected from themeters. Therefore, for case k, k ∈ [1, l], we have a set of feasible values

for all meters, {ak,1, ak,2, ..., ak,m}; for each meter i, i ∈ [1,m], we have a set of feasible

values for l different cases, denoted as {a1,i, a2,i, ..., al,i}. Each meter i, i ∈ [1,m] has

a real measured value a∗i , which can be obtained by checking its reading at its physical

location. All these notations are shown in Table 2.3. At least one of ak,i, k ∈ [1, l], is equal

to a∗i .

Given a verified value a∗i , if ak,i ̸= a∗i , then we know that case k is not the real case;

that is, by verifying meter i, we can exclude case k from the feasible set of cases; if

ak,i = a∗i , feasible case k is possible to be the real case, depending on whether there

exists ak′,i = a∗i , k′ ̸= k. However, from the perspective of the control center, it cannot

know the value a∗i before physically checking meter i. What the control center knows

is just the top part of Table 2.3. For feasible case k and case k′, if ak,i ̸= ak′,i, we can
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Table 2.3: The notations in meter verifying formulation.

meter 1 meter 2 meter 3 ... meter m
case 1 a1,1 a1,2 a1,3 ... a1,m
case 2 a2,1 a2,2 a2,3 ... a2,m
... ... ... ... ... ...

case l al,1 al,2 al,3 ... al,m

real case a∗1 a∗2 a∗3 ... a∗m

guarantee that at least one of them is not the real case by verifying meter i. That is, if

ak,i = a∗i , then case k′ is not the real case; if ak′,i = a∗i , then case k is not the real case;

otherwise, both of them are not the real case. However for the case where ak,i = ak′,i,

we still cannot rule out either case k or case k′ by verifying meter i, since in the case of

ak,i = ak′,i = a∗i , case k and k′ are still both feasible. Following this reasoning, in order to

guarantee that one can find the real case, the control center has to verify a set of meters

such that for any pair of case k and case k′ there exists a meter index i in the set satisfying

ak,i ̸= ak′,i. Thus, the unequal relations, such as ak,i ̸= ak′,i, are the essential information

that can help us decide which meters to verify.

For each set of l values of meter i, {a1,i, a2,i, ..., al,i}, i ∈ [1,m], each pair has a relation,

which is either "equal" or "unequal". Thus, there are l′ =
(
l
2

)
relations. We denote these

relations as follows: First, we list the l′ relations in the following order: Oi = [(a1,i, a2,i),

(a1,i, a3,i), ..., (a1,i, al,i), (a2,i, a3,i), ..., (a2,i, al,i), ..., (al−1,i, al,i)], and index them by 1, 2,

..., l′ sequentially. Second, we define a set Si for each meter i, i ∈ [1,m], such that its

elements have integer values in the range [1, ..l′]. Si is empty in the beginning; j is added

into Si when jth pair in Oi are not equal to each other. Algorithm 2.6 is the pseudo-code

that how Si is populated. The complexity of Algorithm 2.6 is O(ml2).

For example, suppose l = 4 and a1,1 = a2,1 ̸= a3,1 = a4,1 for meter 1, we can get

S1 = {2, 3, 4, 5}, as illustrated in Table 2.4. By going through this process for all meters,

we can get a set S = {S1, S2, ..., Sm}.

Now let U = {1, 2, 3, ..., l′}, where l′ =
(
l
2

)
, and C is a set of meter indices. Then we
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Algorithm 2.6: Set Si for meter i
1 Si = ∅;
2 for j ← 1 to l′ do
3 if jth pair in Oi are unequal to each other then
4 Si = Si ∪ j

Table 2.4: Set S1 for meter 1 in case of l = 4.

Index Relation True/False Elements in S1

1 a1,1 ̸= a2,1 F
2 a1,1 ̸= a3,1 T 2
3 a1,1 ̸= a4,1 T 3
4 a2,1 ̸= a3,1 T 4
5 a2,1 ̸= a4,1 T 5
6 a3,1 ̸= a4,1 F

can formally formulate our problem for two different cases: (1) with limited resource, the

control center can exclude l − 1 out of l feasible cases (reveal the real case); and (2)

with limited resource, the control center cannot exclude l− 1 out of l feasible cases. The

formulations are:

(1) the first case:

min: |C|, such that {∪Si|i ∈ C} = U .

(2) the second case:

max: |{∪Si|i ∈ C}|, such that: |C| ≤ s.

Apparently this problem has the same formulation as the set cover problem, except

that Si has some restrictions; for example for l = 4, Si cannot be {1, 2}, which is a set of

impossible relations (a1,i ̸= a2,i, a1,i ̸= a3,i, a1,i = a4,i, a2,i = a3,i, a2,i = a4,i, a3,i = a4,i).

The set cover problem has been well studied in the literature, and we can use a greedy

algorithm to solve this problem, which selects the set that covers the greatest number of

elements not yet covered each time. Though the formulations are different for the above

two cases, we can use the same algorithm, Algorithm 2.7, as follows:
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Algorithm 2.7: Finding meters to verify: greedy algorithm
1 X = U ;
2 C = ∅;
3 while X ̸= ∅ or |C| < s do
4 select Si that maximizes |Si ∩X|;
5 X = X − Si;
6 C = C ∪ i;
7 output C;

The greedy algorithm has an approximation ratio of O(ln(l2)), and it cannot guarantee

an optimal solution. When l and s are very small, we can resort to brute-force search to

find the optimal solution, as shown in Algorithm 2.8. The complexity of Algorithm 2.8 is

O(sms).

Algorithm 2.8: Finding meters to verify: brute-force search
1 n0 = 0;
2 for j ← 1 to s do
3 for each different set C ′ with j indices do
4 calculate n1 = | ∪ {Si|i ∈ C ′}|;
5 if n1 = l(l − 1)/2 then go to line 7;
6 if n1 > n0 then n0 = n1 and C = C ′;

7 output C.

2.7 Evaluation

In this section, we present the results of several experiments that we conduct. First, we

generate six unidentifiable attacks in three bus systems. Second, we locate the attack

region and enumerate all possible cases using Algorithm 2.3 - 2.5 presented in Section

2.5; at the same time, we show that the IBE method does not correctly identify the set

of bad data, especially if the bad data interact with one another. Finally, we evaluate

the operating cost of the power system based on the optimization strategy we present in

Section 2.4. Our results show that the optimization strategy we propose for dealing with
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unidentifiable attacks is a viable solution.

2.7.1 Generating Unidentifiable Attacks

We generate one Type I attack and one Type II attack in each of 9-bus system, 14-bus

system and 30-bus system, whose topologies are shown in Figure 2.5, Figure 2.6 and

Figure 2.7 respectively. We generate malicious data using the Matpower tool [77], which

is developed to solve power flow problems. Given the topology of a power system, the

transmission line characteristics and power loads on buses (load vector), Matpower is

able to output the power flow on transmission lines and power injections on buses. We

first input one load vector into Matpower and record the first set of meter readings. Then,

we feed another load vector into Matpower and record the second set of meter readings.

Comparing the two sets of readings, some of them are the same in both sets while others

are different. We merge the two sets of readings as follows: for those meter readings that

are different in these two cases, we keep some obtained from the first set, and some from

the second set. In this way, we can get an unidentifiable attack scenario with two feasible

cases.

1
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load bus

generator

Figure 2.5: The topology of 9-bus system in Matpower.

We still consider the two types of attack scenarios illustrated in Section 2.3 using the

ACmodel. For Type I load redistribution attack scenario, we introduce the second feasible

case by increasing the load on one bus by a certain amount and decreasing the load on

another bus by the same amount. Thus, together with the original case, we obtain an
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Figure 2.6: The topology of 14-bus system in Matpower.
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Figure 2.7: The topology of 30-bus system in Matpower.

unidentifiable attack with two feasible cases. For Type II load increase attack scenario,

we introduce the second feasible case by increasing the load only on one bus by a certain

amount; similarly, we get an unidentifiable attack with two feasible cases.

We first generate two unidentifiable attacks using the 9-bus system in Matpower. For

the Type I attack, the compromised meters are listed in Table 2.5, and the rest meters

remain intact and their readings are omitted. The meter readings before the attack are

based on the real power load vector {bus7, bus8} = {100, 0}, and the meter readings after

the attack are based on the real power load vector {bus7, bus8} = {80, 20}; the loads in
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other buses have the same values as those in the Matpower distribution package. For the

Type II attack, the compromised data are listed in Table 2.6. The meter readings before

the attack are obtained when the load of bus 8 is 0, the meter readings after the attack

are obtained when the load of bus 8 is 20; the remaining loads are the same as those in

the Matpower distribution package.

Table 2.5: Type I attack in 9-bus system. The bold ones are the changed.

Meters Before attack After attack (Type I)
PI on bus7 −100 −80
PL from bus7 to bus8 −75.95 −58.03
PL from bus8 to bus7 76.51 58.34
PL from bus6 to bus7 24.18 22.09
QL from bus6 to bus7 22.64 21.46

Table 2.6: Type II attack in 9-bus system.

Meters Before attack After attack (Type II)
PL from bus2 to bus8 163.0 −183.0
PL from bus8 to bus2 −163.0 -183.0

We then generate two unidentifiable attacks in 14-bus system, one for each type. For

the Type I attack, the compromised meters are listed in Table 2.7, and the rest meters

remain intact and their readings are omitted. The meter readings before the attack is

based on the real power load vector {bus12, bus13} = {6.1, 13.5}, and the meter readings

after the attack are based on the real power load vector {bus12, bus13} = {16.1, 3.5}; the

loads in other buses have the same values as those in the Matpower distribution package.

For the Type II attack, the compromised data are listed in Table 2.8. The meters readings

before the attack is based on the real power bus7 = 0, and the readings after the attack

is based on the real power bus7 = 10; the loads in other buses have the same values as

those in the Matpower distribution package.

Finally we generate two unidentifiable attacks using the 30-bus system in Matpower.
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Table 2.7: Type I attack in 14-bus system.

Meters Before attack After attack
PI on bus13 −13.5 −3.5
PL from bus6 to bus12 8.05 12.32
QL from bus6 to bus12 3.31 4.43
PL from bus13 to bus6 −17.93 −14.34
QL from bus13 to bus6 −9.99 −9.33
PL from bus12 to bus13 1.87 −3.96
QL from bus13 to bus12 −1.53 −2.41

Table 2.8: Type II attack in 14-bus system.

Meters Before attack After attack
PL from bus7 to bus8 0 −10.00
PL from bus8 to bus7 0 10.00

Both Type I and Type II attacks are shown in Table 2.9. Columns 3 show the changed

meters for the Type I attack scenario. The meters in other region remain unchanged. The

meter readings before the attack are based on the real power load vector {bus29, bus30} =

{2.4, 10.6}, and themeter readings after the attack are based on the real power load vector

{bus29_1, bus30_2} = {12.4, 0.6}; the loads in other buses have the same values as those

in the Matpower distribution package. Column 4 shows the changed meters for the Type

II attack scenario. The meter readings before the attack are obtained when the load of

bus 30 is 10.6, the meter readings after the attack are obtained when the load of bus 30

is 20.6; the remaining loads are the same as those in the Matpower distribution package.

2.7.2 Locate the Attack Region and Enumerate Feasible Cases

For the six attacks listed above, we first use Algorithm 2.3 to get the deleted set D. The

deleted set for each attack is listed in Table 2.10, where where bsxx_1/2 means PI/QI on

bus xx respectively, and brxx_1/2/3/4 means the PL/QL on the from-bus and to-bus of

branch xx respectively. In 9-bus power system, br3 = {bus5, bus6}, br5 = {bus6, bus7},
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Table 2.9: Type I and II attacks in 30-bus system.

Meters Before After attack After attack
attack (Type I) (Type II)

PI on bus27 26.91 26.91 37.63
QI on bus27 11.39 11.39 12.74
PI on bus29 −2.4 −12.4 −2.4
PL from bus27 to bus29 6.17 9.32 10.56
QL from bus27 to bus29 1.68 1.68 2.27
PL from bus29 to bus27 −6.08 −9.12 −6.08
PL from bus27 to bus30 7.12 3.96 13.46
QL from bus27 to bus30 1.67 1.67 2.45
PL from bus30 to bus27 −6.95 −3.91 −6.95
PL from bus29 to bus30 3.68 −3.28 7.90
QL from bus29 to bus30 0.61 0.61 0.88
PL from bus30 to bus29 −3.65 3.31 −3.65

br6 = {bus7, bus8}, br7 = {bus2, bus8}, and br8 = {bus8, bus9}. In 14-bus power system,

br12 = (bus6, bus12), br13 = (bus6, bus13), and br19 = (bus12, bus13). And in 30-bus

power system, br37 = (bus27, bus29), br38 = (bus27, bus30) and br39 = (bus29, bus30).

In order to show the effectiveness of IBE, we also list the real compromised set for each

attack.

As we can see from Table 2.10, the IBE method cannot identify the real compromised

measurements, and there is even no common element between the deleted set and com-

promised set. This illustrates that the IBE method cannot identify the interacting bad

measurements as mentioned in previous work, such as [36, 57, 3, 15, 41]. Neither can

other bad data detection methods, such as NQC, HIT and COI mentioned in Section 4.2,

as explained in Section 2.5.3.

Next we apply Algorithm 2.4 on the deleted set listed in Table 2.10 to get the attack

region. Though the deleted sets do not even contain one real compromised measure-

ment, the attack regions obtained from Algorithm 2.4 do contain all the compromised

measurements. The attack regions are shown in the dashed rectangle or trapezoid in

Figure 2.5, Figure 2.6 and Figure 2.7; in the 30-bus system, the two attacks have the
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Table 2.10: The deleted sets and compromised set for four attacks.

Attack Deleted set Compromised set

9
Type I bs8_1, br5_3, br3_3 bs7_1, br6_1, br6_3

br3_1, bus5_1, br5_1 br5_1, br5_2

Type II bs2_1, bs8_1 br7_1, br7_3
br7_2, br8_2

14 Type I
bs12_1, br19_3, br12_3 bs13_1, br12_1, br12_2
br13_1, br19_2, br13_2 br13_3, br13_4, br19_1

br12_4 br19_4
Tpye II bus7_1, bus8_1 br14_1, br14_3

30

Type I
bs30_1, br38_2, br37_2 bs29_1, br37_1, br37_3
br38_4, br37_4, br39_2 br38_1, br38_3, br39_1

br39_4 br39_3

Type II
bs30_1, br38_3, br37_3 bs27_1, bs27_2, br37_1
br39_3, br37_4, br39_4 br37_2, br38_1, br38_2

br38_4 br39_2

same attack region.

Finally, we apply Algorithm 2.5 directly to enumerate all feasible cases. For all six

unidentifiable attacks, we are able to find out that there are only two feasible cases for

each attack, just as same as described in Section 2.7.1. Furthermore, we can tell the

attack type of each attack after obtaining its feasible cases. Let us take the Type II attack

in 14-bus system as an example to show the effectiveness of Algorithm 2.5. In the 14-

bus system, there are 14 buses and 20 branches. As we assume 4meters on each branch

and 2 meters on each bus, there are 108 meters in total. To calculate the time complexity

of the enumerating algorithms in Section 2.5, let us further assume that the attacker can at

most compromise 8 meters and there is no protected meter in the power system (P = ∅).

For the brute-force search algorithm, the search space of
8∑

i=1

(
108
i

)
, is still huge, not to

mention all the computations required for state estimation and residual checking. While

in the attack region, there are only 16 meters. By localizing the attack region first, the

search space is greatly reduced to at most
8∑

i=1

(
16
i

)
. Actually, the search space is even far

smaller than
8∑

i=1

(
16
i

)
for two reasons. The first is that we have already found one feasible
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case via the IBE method. The second is, once a feasible case is found, the brute force

search can skip some combinations. For instance, if a solution with 3 bad data has been

identified, we do not need to check all bad data combinations which include those 3 bad

data.

2.7.3 Optimization on the Cost

We evaluate our optimization problem using the six unidentifiable attacks we discussed in

Section 2.7.1. For each of the unidentifiable attack, we have already known that there are

two feasible cases andwhat they are. Thus, we only need to feed these feasible cases into

the objective function Eq(2.1) and try to minimize it. We use the free software IPOPT [58]

to solve the nonlinear optimization problem. In our analysis, we set the power shedding

cost as five times as the cost of the most expensive generator. This setting is reasonable,

since the power shedding cost must be higher than the cost of any generator; otherwise,

the generator will choose not to satisfy the load demand even it still has available capacity.

2.7.3.1 Type I Attack in 9-bus System

In this attack, we change five meters as shown in Table 2.5. Under this unidentifiable

attack, the control center may either conclude that the power demands of bus 7 and bus

8 are 100 and 0 (case 1), or they are 80 and 20 (case 2). These two load vectors are

fed together with the constraints into IPOPT to determine the optimal state variables,

the voltage and phase on each bus, which can minimize the total cost. In the original

Matpower packet, all line capacities are 250 MVA. In order to examine the impact of line

capacities, we adjust the line capacity of line 6 (between bus 7 and bu 8) to 60 MVA. The

cost comparison is listed in Table 2.13, in which solution 1 is the optimal solution based

on case 1, and solution 2 is the optimal solution based on case 2. ``Over-load'' means

that if the control center gets a solution based on case 1 but it is actually case 2, then

some branches will exceed their line capacities. As we can see, our solution is better

45



than solution 2. However, our solution is comparable to Solution 1. The reason is that

even we limit the line capacity between bus 7 and bus 8, the power can go from generator

2 to bus 7 by circumventing the line between bus 7 and bus 8.

Table 2.11: The cost comparison for type I attack in 9-bus system.

If case 1 If case 2 Average
Solution 1 5316.9 5316.9 5316.9

Solution 2 Over-loaded 5306.0 NA
Our solution 5317.0 5315.5 5316.2

2.7.3.2 Type II Attack in 9-bus System

Table 2.6 shows type I attack in 14-bus system. The two feasible cases are: the real power

demand on bus 7 is either 0 (case 1) or 20 (case 2). In this example, we do not change

any line capacity. The cost comparison is listed in Table 2.12, where ``Over-powered''

means that if the control center gets a solution based on case 2 but it is actually case 1,

then some buses will get more power than their demands. As we can see, our solution is

still the best, given that the control center cannot favor one case over the other.

Table 2.12: The cost comparison for type II attack in 9-bus system.

If case 3 If case 4 Average
Solution 3 5310.0 6055.0 5682.5

Solution 4 Over-powered 5805.2 NA
Our solution 5310.1 5863.4 5586.7

2.7.3.3 Type I Attack in 14-bus System

In this attack, we change 7 meters as shown in Table 2.7. Under this unidentifiable attack,

the control center may either conclude that the power demands of bus 12 and bus 13 are

6.1 and 13.5 (case 1), or they are 16.1 and 3.5 (case 2). In the original Matpower packet,
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all line capacities are 9900 MVA. In order to examine the impact of line capacities, we

adjust the line capacities for the following branches: branch 12, branch 13, and branch

19 to 10 MVA, 25 MVA and 10 MVA respectively. The cost comparison is listed in Table

2.13. As we can see, our solution is the best, given that the control center cannot favor

one case over the other.

Table 2.13: The cost comparison for type I attack in 14-bus system.

If case 1 If case 2 Average
Solution 1 8083 Over-loaded NA
Solution 2 8594 8594 8594

Our solution 8573 8595 8584

2.7.3.4 Type II Attack in 14-bus System

Table 2.8 shows type I attack in 14-bus system. The two feasible cases are: the real

power demand on bus 7 is either 0 (case 1) or 10 (case 2). In this example, we do not

change any line capacity. The cost comparison is listed in Table 2.14. As we can see,

our solution is still the best, given that the control center cannot favor one case over the

other.

Table 2.14: The cost comparison for type II attack in 14-bus system.

If case 1 If case 2 Average
Solution 1 8083 10208 9146

Solution 2 Over-powered 8486 NA
Our solution 8087 10081 9084

2.7.3.5 Two Attacks in 30-bus System

The evaluation for the two attack in 30-bus system is similar to that in 9-bus system and

14-bus system. Here we omit the details but only keep the main results. In the type I
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attack, the two feasible cases are: the power demands of bus 29 and 30 are 2.4 and

10.6 (case 1), or they are 12.4 and 0.6 (case 2). And we adjust the line capacities for the

following branches: branch 37, branch 38, and branch 39 from the original value of 16

MVA to 4 MVA, 8 MVA and 3 MVA respectively. The cost comparison is listed in Table

2.15. In the type II attack, the two feasible cases are: the real power demand on bus 30

is either 10.6 (case 1) or 20.6 (case 2), and the cost comparison is shown in Table 2.16.

Table 2.15: The cost comparison for type I attack in 30-bus system.

If case 1 If case 2 Average
Solution 1 635.0 Over-loaded NA
Solution 2 693.1 693.1 693.1

Our solution 680.3 693.7 687.0

Table 2.16: The cost comparison for type II attack in 30-bus system.

If case 1 If case 2 Average
Solution 1 581.2 775.0 678.1

Solution 2 Over-powered 623.6 NA
Our solution 581.3 750.7 666.0

Again, we can see that our solutions is the best on average among all the solutions,

which shows that our optimization strategy is indeed viable and effective.

2.7.3.6 Discussion

In the six examples above, our solutions are the best compared to the solutions that are

optimal only to one of several feasible cases. For Type II load increase attack, our solution

is always much better. For Type I load redistribution attack, if the line capacities are not

limited or only a few are limited, the gain of our solution is small, such as ``Our solution''

compared to ``Solution 1'' in Table 2.11. However, if more line capacities are limited, the

gain of our solution becomes big, such as the other two Type I attacks.
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2.8 Conclusion

Cyber-physical systems (CPS) face various attacks and demand sophisticated counter-

measures. In this chapter, we investigate the electric power system, a typical and crucial

CPS in modern society. We point out that the electric power system is vulnerable to po-

tential cyber attacks, and introduce the concept of unidentifiable attacks, which has never

been proposed before. In such an attack, the control center cannot obtain a determinis-

tic state estimation; there may be several feasible cases, and the control center cannot

simply favor one over the others. We also discuss a strategy that an attacker can use to

identify good attack regions where he can choose meters to compromise for an identifi-

able attack. We then formulate an optimization strategy from the perspective of the control

center to deal with an unidentifiable attack such that the average damage caused by the

attack can be minimized. Furthermore, we propose a three-step scheme that allows us

to find all feasible cases under an unidentifiable attack, in which we locate attack region

first and hence significantly reduce the search space when compared to the search space

using the brute-force search scheme directly. We also discuss a strategy that the control

center can use to reveal the real case if it has some limited resources to verify some me-

ters. Finally, we evaluate and validate our optimization strategy and enumerating scheme

using three power systems.
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Chapter 3

Defending Against Cooperative

Attacks in Cooperative Spectrum

Sensing

When addressing the security of cyber-physical systems (CPS), we have to consider the

communication networks in CPS as well. Communication networks play an important role

in CPS, transmitting data among different entities in CPS. As a result, from the perspec-

tive of security, communication networks are as important as the entire security of CPS

itself. Following the previous chapter, which addresses security of CPS itself, this chap-

ter investigates security of communication networks used in CPS. Again, we use typical

communication networks commonly found in CPS, i.e., the cognitive radio network, as an

example to show potential threats and corresponding countermeasures.

3.1 Introduction

With the recent rapid growth of wireless services, spectrum space is becoming increas-

ingly crowded. Within the traditional spectrum regulation framework, spectrum bands are

exclusively licensed to specific services (primary users), and no violation from unlicensed
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services (secondary users) is allowed. As a result, the licensed spectrum is greatly under-

utilized temporally and spatially. To solve this dilemma, cognitive radio has emerged to

enable secondary users to opportunistically share the licensed spectrum, with the help of

spectrum sensing methods [20, 40, 65, 73, 76].

Among the spectrum sensing methods, cooperative spectrum sensing [1, 14, 39] has

shown good performance in improving the accuracy of primary user detection. In cooper-

ative spectrum sensing, a set of secondary users is selected to share the sensing results

with each other to make a cooperative decision on the presence/absence of the primary

user. However, this opens a window for malicious users and attackers, who may remotely

or physically capture and control some secondary users and manipulate their sensing re-

ports simultaneously. As a result, such sensing reports are not trustworthy, nor is the

primary user detection decision.

A key challenge is identifying compromised sensing reports under an attack and mak-

ing a detection decision only with uncompromised sensing reports. Min et al. [38] has

proposed a novel framework called IRIS to pinpoint compromised sensing reports by it-

eratively utilizing the largest normalized residual method [18]. IRIS works well for most of

attack scenarios. In this chapter, we introduce an attack model in which an attacker injects

some self-consistent but false data simultaneously. Under this specific kind of attacks,

a good measurement, instead of a compromised one, may have the largest normalized

residual. As a consequence, the largest normalized residual method, as well as IRIS,

may eliminate good measurements while keeping compromised ones. Thus, we argue

that IRIS may not work well under this kind of attacks, and there is still room for improve-

ment. We hence propose a modified COI (combinatorial optimization identification) [47]

to complement IRIS.

Overall, this work makes the following contributions:

• We design an attack model, called cooperative attack, in which an attacker injects

self-consistent false data to multiple sensors simultaneously.
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• We propose a theorem that the center node of a cognitive radio network may face

uncertainties under a cooperative attack, especially in the case when a large portion

of sensors are compromised.

• We propose a modified COI algorithm to deal with cooperative attacks. Our algo-

rithm is a good scheme to complement IRIS for cooperative attacks, and can be

flexibly adjusted to fulfill the detection delay requirement.

• We intensively evaluate our algorithm through simulation, with the results validating

its performance.

The rest of chapter is organized as follows. Section 3.2 is related work. Section 3.3

describes the system model, the attack model and the problem formulation. In Section

3.4, we propose our solution. We conduct simulations in Section 3.5 and conclude this

work in Section 3.6.

3.2 Related Work

Cooperative spectrum sensing has emerged in recent years to improve spectrum sens-

ing accuracy. However, it suffers from various security vulnerabilities. In cooperative

spectrum sensing, multiple secondary users can easily alter the detection decision by re-

porting unreliable or compromised sensing results simultaneously. Thus, it is essential

to designing robust cooperative sensing schemes to defend against malicious users, and

much effort has already been made in recent years, such as [7, 9, 10, 22, 31, 33, 70, 75].

In [7], a reputation-based mechanism is proposed to address data falsification, in which

reputations of users are used to weigh their sensing reports. In [9], the authors convert

the area of interest into a grid of square cells and use it to identify and discard the outlier

measurements. In [10], an approach based on machine learning is proposed, in which an

initial trusted set of signal data is used to build a classifier which is subsequently used to
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detect integrity violations. In [22], an outlier detection scheme is proposed to filter out ex-

treme values in the sensing data. In [31], an approach based on abnormality detection in

data mining is proposed. In [33], the authors present an abnormality detection scheme by

using the path-loss exponent in signal propagation. In [70], a consensus-based scheme

is proposed to defend against data falsification, in which the cooperative decision is grad-

ually reached in a distributed manner. In [75], the authors propose to use total error

probability to evaluate spectrum sensing accuracy and also propose a weighted sensing

framework. Public-key schemes, such as [59, 60], can also be implemented to defend

against malicious users.

As mentioned previously, Min et al. [38] have developed an attack detection frame-

work in cooperative spectrum sensing, called IRIS. They introduce system state estima-

tion to determine the presence/absence of a primary user, in which the system state vari-

ables are the transmission power of the primary transmitter and the path-loss exponent.

Their insight is that the sensing reports are governed by the network topology and the

signal propagation principle. In IRIS, they utilize the largest normalized residual method

[18] to delete abnormal sensing reports iteratively until the norm of measurement residu-

als drops below a detection threshold or the number of remaining reports hits a protection

threshold. Though IRIS works well for most of attack scenarios, we show in this work

that it may not work well against cooperative attacks, and we propose a modified COI to

complement IRIS.

3.3 Problem Formulation

In this section, we will first present a centralized cooperative spectrum sensing system.

Then we will describe the attack model and formulate our problem.
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3.3.1 System Model

In a cognitive radio network, both primary users and secondary users coexist in the same

geographical area. Since secondary users are allowed to opportunistically access the li-

censed spectrum originally allocated to primary users, methods to detect the presence/ab-

sence of primary users are required. Cooperative spectrum sensing is a robust scheme,

in which several secondary users cooperatively determine whether a primary user is us-

ing its licensed spectrum or not. In this work, we consider a centralized model. As shown

in Figure 3.1, there is a primary user, N secondary users (sensors), and a center node.

During each sensing period, sensors measure primary user signals and then send them

to the center node using a dedicated control channel. Then the center node will determine

the presence/absence of the primary user based on the collected data and broadcast the

final decision to all sensors.

primary signal

sensing report

occupancy info

Center node

transmitter

Second user

Second user

Primary 

Figure 3.1: The centralized model of cooperative spectrum sensing.

According to the path-loss signal propagation model, the received signal strength of

the primary user at a cooperative sensor i, Pi, can be modeled as follows:

Pi = P0 + α10log10(d0/di) + ϵi, i ∈ [1, N ] (3.1)

where P0 is the received power at the reference distance d0, α is the path-loss exponent,

di is the distance between the primary user and sensor i, and ϵi is the measurement error

of sensor i.
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3.3.2 Attack Model: Cooperative Attacks

We assume that:

• The attacker can compromise some of the sensors in the network.

• Once a sensor is compromised, the attacker can read and manipulate its sensing

report arbitrarily.

• The attacker can manipulate compromised sensors' reports simultaneously.

• The attacker knows a portion of the network topology, i.e., the location of the primary

user and those of the sensors he has compromised.

During an attack, the attacker aims to mislead the control node to make a wrong

decision. The attacker first compromises some sensors and reads their sensing reports.

Based on these sensing reports, the attacker can conclude whether or not the primary

user is present. Then the attacker injects false sensing reports into these compromised

sensors simultaneously. The attacker's ultimate goal is to mislead the control node into

making a decision totally opposite to the real scenario. Specifically, when the primary user

is present, the attacker will inject false sensing reports as if the primary user is absent;

when the primary is absent, the attacker will inject false data as if the primary user is

present. To maximize the attack effect, the attacker will inject self-consistent false sensing

reports; that is, all injected data are based on a single power level which is different from

the real value. We name this type of attacks cooperative attacks. For a cooperative

attack, the control center may be easy to detect its presence, but may be difficult to figure

out what it really is.

3.3.3 Problem Formulation

We denote the set of all N sensors in a cognitive radio network by S = {S1, S2, ..., SN}.

During a sensing period, we assume that the sensing reports are P = [P1, P2, ..., PN ]T
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before any attack, where T is the matrix transpose operator. Now an attacker has com-

promise a set of Ncom sensors, denoted by S′, where S′ ⊂ S. Without loss of generality,

we assume that the compromised sensors are the first Ncom sensors in S to simplify

the description. Based on the sensing reports of [P1, P2, ..., PNcom ]
T , the attacker con-

ducts a linear fitting according to Eq (3.1) and obtains the primary transmission power

P0, and the path-loss exponent α. Then the attacker will inject false data into the Ncom

compromised sensors as if the two values are P ′
0 and α′, where P ′

0 tells a scenario

opposite to the real one and α′ can be any normal value. Suppose that the compro-

mised sensing reports are P′ = [P ′
1, P

′
2, ..., P

′
Ncom

]T . The remaining sensing reports,

Pr = [PNcom+1, ..., PN ]T , are intact. Then on the control node side, the collected sensing

reports are Pa = P′ ∪ Pr = [P ′
1, P

′
2, ..., P

′
Ncom

, PNcom+1, ..., PN ]T . Our problem, illustrated

in Figure 3.2, is to obtain the real transmission power P0 from Pa. At the same time, it will

be a plus if all compromised sensors can be identified.

...

’α    SV: P   ,0
’

P’
1 2

’’ P ’=[ P   , P   ,  ... ,           ] Ncom rP N       +1com
PN

...

SV: P   ,0 α
=[ P            , ... ,       ]

SV: P   ,0 α
P 1 2 N=[ P  , P   ,  ... ,        ] P

...

are compromised
com   N        sensors

...

α0SV:  P  ? ,       ?

PN
’

com
PNPa 1

’
2
’ PN       +1com

=[ P  , P  ,  ... ,             ,                , ... ,      ]

Figure 3.2: Attack model and problem formulation. SV stands for state variables.

56



3.4 Bad Data Identification

In this section, we will propose our solution to the problem formulated in the previous

section. Since our algorithm is to complement IRIS, we will first review IRIS and point

out the limitation of IRIS. Then we will present a theorem that the center node may face

uncertainties under a cooperative attack. Finally we will present our algorithm in detail.

3.4.1 IRIS Algorithm

In [38], the authors introduce state estimation that provides a useful approach to detect the

presence of attacks and further pinpoint the compromised sensors. In state estimation,

the state variables are P0 and α in Eq(3.1), denoted by vector x:

x △
= [P0 α]T (3.2)

Note that P = [P1, P2, ..., PN ]T is the vector of the primary transmitter's signal strength

received by N sensors. Then Eq(3.1) for N sensors can be expressed in matrix notation

as follows:

P = Hx+ ϵ (3.3)

where

H △
=


1 10log10(d0/d1)
...

...
1 10log10(d0/di)
...

...
1 10log10(d0/dN )


N×2

(3.4)

and ϵ is the vector of measurement errors:

ϵ = [ϵ1, ϵ2, ..., ϵN ]T (3.5)

Three statistical estimation criteria are commonly used to obtain the state estimator

x: the maximum likelihood criterion, the weighted least-square criterion, and the min-
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imum variance criterion. When measurement errors follow the normal distributed with

zero mean, i.e., ϵi ∼ N(0, σ2
i ), these criteria result in the same solution:

x̂ = (HTWH)−1HTWP (3.6)

whereW is a diagonal matrix whose elements are σ−2
i , 1 ≤ i ≤ N :

W =

 σ−2
1

σ−2
2
· · ·

σ−2
N


N×N

(3.7)

After obtaining state estimator x̂, the center node will first examine whether there is

an attack by checking the norm of normalized residuals. The normalized residuals are

defined as follows:

rN = D−1/2r (3.8)

where

D = diag(W−1 − H(HTWH)−1HT ) (3.9)

r = P− Hx̂ (3.10)

If the L2 norm ||rN || is greater than a pre-defined threshold η, the center node will

know that some data has been compromised. IRIS adopts the largest normalized residual

method [18] to pinpoint and eliminate the compromised data. It eliminates the data with

the largest normalized residual iteratively until the norm of normalized residuals of the

remaining data is less than the threshold η or the number of remaining sensors hits a

pre-defined threshold Nmin.

Under a cooperative attack, a good measurement, however, may have the largest

normalized residual. The largest normalized residual method, as well as IRIS, may elim-

inate good measurements while keeping compromised ones. The ultimate consequence
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is that the center node may get an incorrect power level for the primary transmitter and

make a decision inconsistent with the reality.

Here we give a counter-example to support our arguments. Suppose there are N = 7

cooperative sensors. To make it simple here, we assume there is no measurement error

(we do consider measurement errors in the following sections), and we also omit the

units. Let d0 = 1, and d = [2, 3, 3, 4, 4, 5, 6]T 5. Just as in [38], here we adopt the threshold-

based rule, in which the determination of whether the primary user is active is based on

two thresholds, Ph and Pl. When P0 > Ph, the primary user is active. When P0 < Pl,

the primary user is idle. When Pl ≤ P0 ≤ Ph, secondary users can partially use the

licensed spectrum with transmission power control. Let us assume Ph = 4 and Pl = 3.

Suppose before any attack, the measurements are P = [−7.04, −14.08, −14.08, −19.08,

−19.08, −22.96, −26.13]T . By Eq(3.6), we can get x̂ = [P0 α]T = [5, 4]T (here W is

the identity matrix). Therefore, P0 is greater than Ph, and the primary user is active.

Now suppose an attacker has compromised the first four sensors, and he manipulates

the measurements on these sensors as if the primary user is idle. After the attack, the

measurements are Pa = [−10.04, −17.08, −17.08, −22.08, −19.08, −22.96, −26.13]T , with

the last three measurements intact. Initially, this data cannot pass the residual test; that

is, the norm of normalized residuals is greater than the threshold η. By applying IRIS, the

measurements from sensors 5, 6, and 7 are eliminated successively. After eliminating

these three measurements, the final state vector is x̂′ = [P ′
0 α′]T = [2, 4]T . Then the

center node will conclude that the primary user is idle since P ′
0 is less than Pl, which is

opposite to the reality.

3.4.2 Uncertainty Under Cooperative Attacks

Here we take a deep look at the counter example in Section 3.4.1, which is a cooperative

attack. We can divide the seven measurements into two sets, the first four as set A
5Same di does not necessarily mean that the two sensors are at the same location, since di is the distance

between sensor i and the primary transmitter.
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and the last three as set B, and set A is compromised by the attacker. After the attack,

set A alone can determine a set of state variables x̂A = [2, 4]T ; we say set A alone is

consistent. Set B can determine another set of state variables x̂B = [5, 4]T , which is the

same as the original; we also say set B is consistent. That is, the attacker actually mixes

two feasible state vectors6 together. At the same time, the attacker makes IRIS eliminate

the measurements in set B first rather than in set A. As a consequence, it misleads the

center node to make a completely incorrect decision. Since both set A and set B are

two feasible sets of measurements, by no means can we favor one set over the other.

However, if we know the attacker's capability, we may be able to make a decision. For

instance, if we assume that the attacker can at most compromise three measurements,

then we know that set B must be compromised. While if we assume that the attacker can

compromise four measurements, we still do not know which set is compromised. This

raises the question, how many measurements must the attacker compromise to cause

such uncertainty? We answer this question by the following theorem.

Theorem 1: For a cooperative sensing system with N sensors that do not have mea-

surement errors, there exists a critical numberNc = ⌊N/2⌋−1 such that: (1) if the attacker

can at most compromiseNc sensors and all di are different, then there is only one feasible

state vector; (2) otherwise, there may be more than one feasible state vector.

Proof: Since a state vector only has two variables, P0 and α, any two measurements

whose channel gain matrix H2×2 has full rank can determine a state vector. Since all

di are different, any two measurements can determine a state vector. Thus, any two

feasible sets of measurements that result in two different state vectors have at most one

measurement in common. Suppose N is even (when N is odd, the proof is similar), and

N = 2f + 2. Now the attacker has compromised Nc = f measurements. There are two

cases in total:

(1) These f measurements are consistent and can perfectly determine a state vector
6Here by feasible state vector, we mean a state vector [P0, α] that is obtained from a subset of total mea-

surements. The subset, with its cardinality maximized, is called a set of feasible measurements accordingly.
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different from the original one. Thus, there are two feasible sets of measurements in total.

If these two sets have one measurement in common, as shown in the top of Figure 3.3,

then for the original feasible set, the center node will conclude that there are f compro-

mised measurements; for the compromised feasible set, the center node will conclude

that there are f + 1 compromised measurements. If these two have no measurement in

common, as shown in the middle of Figure 3.3, then for the original feasible set, the center

node will still conclude that there are f compromisedmeasurements; for the compromised

feasible set, the center node will conclude that there are f + 2 compromised measure-

ments. Since the attacker can at most compromise f measurements, in either case, the

center node can deterministically identify the set of compromised measurements.

f+1f

f+2f

1f f

1

Bad data in original case

Bad data in compromised case

Original FS

Compromised FS

Figure 3.3: Illustration of two feasible sets. FS is the abbreviation of feasible set.

(2) These f measurements are not consistent. In this case, for the original feasible

set, the center node will conclude that there are f compromised measurements. For any

other feasible set, its cardinality is at most f (f − 1 of the f compromised measurements

plus one of the intact measurements), so the center node will conclude that there are at

least f + 2 compromised measurements. Again, the center node can identify the set of

compromised measurements.

To prove that f is tight, we show by an example that the uncertainty can still exist if

f out of 2f + 1 sensors, instead of 2f + 2 sensors, are compromised. In this example,

the attacker compromises f measurements, and the original feasible set and the com-
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promised feasible set have one measurement in common, as shown in the bottom of

Figure 3.3. As a result, the compromised feasible set has f + 1 measurements, which

are the f compromised measurements plus the measurement in common. The original

feasible set also has f + 1 measurements. Therefore, for both feasible cases, the center

node will conclude that there are f compromised measurements. Thus the center node

still does not know which feasible case is the real case. Therefore, f is tight. 2

In Theorem 1, we assume that the sensing reports from uncompromised sensors have

no measurement error. When measurement errors do exist, the value ofNc will decrease.

In the case without measurement errors, we look for a set of feasible measurements by

checking whether the norm of residuals is zero. In the case with measurement errors,

however, we check whether the norm of residuals is less than a positive threshold. That

is, the check condition is loosened. Therefore, Nc will decrease.

Though it is hard to know in advance how many sensors are compromised, we can

estimate how many sensors an attacker can compromise, considering the effort and re-

source the attacker can take. We do not consider the case that the attacker compromise

all or most of the sensors, since in this case there is no way to pinpoint the compromised

sensors. As in IRIS [38], the authors set a threshold,Nmin, which is the required minimum

number of remaining sensors.

Following the theorem above, we argue that IRIS may eliminate data from good sen-

sors instead of bad sensors and get an incorrect feasible solution under cooperative at-

tacks, especially when the algorithm hit the threshold Nmin first. In the following, we

will propose a modified version of Combinatorial Optimization Identification (COI) [41] to

complement IRIS.

3.4.3 Modified COI

The original COI is an approach for identifying multiple instances of bad data in power

system state estimation. The essential idea is to construct a partial decision tree using
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the branch-and-bound method to obtain a feasible solution with the minimum number of

bad data. We borrow this idea and make two modifications to fit our problem.

As mentioned above, there may be more than one feasible solution. Therefore, our

first modification is to find all feasible solutions instead of only the one with the minimum

number of bad data. The second modification is setting a time threshold to meet the time

requirement in cooperative spectrum sensing. For instance, in IEEE WRANs, the center

node must make a detection decision once every 2 seconds. We will run the branch-and-

bound method with increasing bound until hitting the time threshold.

We first illustrate the branch-and-bound strategy, and then present the complete al-

gorithm. The branch-and-bound method will construct a partial decision tree. Since the

data with the largest normalized residual is usually more likely to be compromised, after

each state estimation run, we pick the sensor with the largest normalized residual as the

target node. Each target node has two branches, the right branch representing the case

that the sensor is compromised and its left branch representing the other case that the

sensor is good, as shown in Figure 3.4.

g−successor b−successor

parent−node

Figure 3.4: Successors of a node.
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Figure 3.5: Branch strategy in the decision tree.

The state estimation is conducted at each target node assuming that all undeclared

sensors are good. The next sensor to target is the one whose sensing report has the

largest normalized residual among all the undeclared sensors. In Figure 3.4, the b-

successor will be the sensor with the largest residual among all undeclared sensors as-

suming the parent node is compromised, and the g-successor will be the sensor with the

largest residual among all undeclared sensors assuming the parent node is good. The
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key strategy of the tree construction is to first move down towards the right until a feasible

solution is reached, and then backtrack to find better solutions. In backtracking, the algo-

rithm stays as far as possible to the right. Let us use an example to illustrate this strategy.

As shown in Figure 3.5, the tree is constructed in the following order:

(1) at the beginning, sensor A has the largest normalized residual, and it becomes the

root of the tree; with node A declared bad, run state estimation and node B emerges to

have the largest normalized residual; then node B becomes the b-successor of node A;

(2) with node B declared bad, run state estimation and node C has the largest normal-

ized residual; then node C becomes the b-successor of node B;

(3) similar to step (2), construct node D; suppose a feasible solution is found;

(4) backtrack to node C, assume node C is good and run state estimation; node E

becomes the g-successor of node C;

(5) construct node F; suppose another feasible solution is found;

(6) backtrack to node B and construct nod G.

The above construction only shows branching. The bounding is taken care of by a

heuristic parameter h. In the tree, a g-successor means that one refuses to make a

decision that the data with largest normalized residual is compromised, and instead asks

for more information about the remaining data. During tree construction, the algorithm

keeps a record on how many times a candidate solution takes a g-successor. If a node

already has h g-branches between itself and the root, no more g-branches are considered

for itself and its successors.

Before we detail our modified COI, we define some parameters and functions. We use

bi to denote three states of sensor i, declared bad, declared good, undeclared, with 0, 1,

−1, respectively. We use a vector to represent a candidate problem v = [b1, b2, ..., bN ];

for instance, in the very beginning, the candidate problem is v = [−1,−1, ...,−1]. We

set the parameter h = 3. As pointed out in [41], h = 2 is usually enough. We define two

functions,Nzeros(v) andNones(v), which operate on a vector v and return the number of

zero elements in v and the number of one elements in v, respectively. t0 is the acceptable
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time delay for a detection decision, η is the attack detection threshold. The candidate

problem with different numbers of g-successors are stored in different stacks. Unless t0

is used up, the algorithm will first examine candidate problems with no more than one

g-successor in stack S1, then those with 2 g-successors in stack S2, and finally those with

3 g-successors in stack S3. Our algorithm is trying to find better feasible solutions than

that from IRIS without violating the detection delay requirement. The algorithm is detailed

in Algorithm 3.1.

Algorithm 3.1: Modified COI.
Input: h = 3, t0;
Output: Set F that contains all sets of feasible measurements.

1 t = 0; bi = −1, 1 ≤ i ≤ N ; v = [b1, b2, ..., bN ];
2 S1 = push(v);
3 while (S1 ̸= ∅ .or. S2 ̸= ∅ .or. S3 ̸= ∅) .and. t < t0 do
4 if S1 not empty then
5 ccp = S1.pop; // ccp for current candidate problem;
6 else if S2 not empty then
7 ccp = S2.pop;
8 else
9 ccp = S3.pop;
10 run estimation with data having bi ̸= 0 in ccp, i ∈ [1, N ];
11 calculate ||r|| and find index i∗ such that Pi∗ has the largest normalized residual;
12 Cost = Nzeros(ccp); // Cost counts how many reports declared bad in ccp;
13 if ||r|| < η // find a feasible solution then
14 CB = Cost; // CB stands for current best solution;
15 F = F ∪ ccp;
16 else
17 if Nones(ccp) < h then // construct g-successor
18 replace i∗th element of ccp by 1;
19 j = Nones(ccp);
20 Sj .push(ccp);
21 if Cost < CB − 1 then // construct b-successor
22 replace i∗th element of ccp by 0;
23 j = Nones(ccp);
24 Sj .push(ccp);

25 t = t+ processing time;

After running Algorithm 3.1, we get set F , which contains sets of feasible measure-
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ments. Since all of them are feasible, we cannot favor some over others without further

information. In practice, we can estimate the attacker's capability, i.e., the maximum

number of sensors he can compromise. Suppose the attacker can at most compromise

r sensors, then we can filter out some of them by Algorithm 3.2.

Algorithm 3.2: Filtering out some feasible solutions.
1 for any vector v ∈ F do
2 if Nzeros(v) > r then
3 F = F\v

3.4.4 Discussion

OurmodifiedCOI,Algorithm 3.1, is complementary to IRIS, since its first feasible solution

completely relies on the largest normalized residual method. The solution from IRIS may

or may not be in F. If we set r = Nmin, where Nmin is a threshold in IRIS, and IRIS hits

the threshold η first, then the solution from IRIS is definitely in F. Otherwise, it may not be

in F. In this sense, our modified COI complements IRIS in two ways. First, if the solution

from IRIS is not in F, IRIS pinpoints the compromised measurements incorrectly, while

our algorithm most likely finds the truth. Second, if the solution from IRIS is the one and

only one in F, our algorithm is as good as IRIS, while our algorithm reveals the uncertainty

if there is more than one solution in F. Note that if there is more than one solution in F, the

center node has to take all of them into consideration, or has to resort to some verification

approaches to narrow F down to one feasible solution.

The problem in this work is purely combinatorial. Our modified COI does not scan the

decision tree thoroughly, while it only scans the partial tree that most likely containsmost of

the feasible solutions. To figure out all feasible solutions, one has to use the brute-force

search method, which, however, takes too much computational time. The brute-force

search method are summarized in Algorithm 3.3. In Algorithm 3.3, we assume there

are at most r bad measurements and check every possible combination (line 1). The r
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assumed bad measurements, however, are not necessarily all bad; we re-examine them

one by one to see if they are really bad (line 5-9), where ϵ is a pre-defined parameter.

Algorithm 3.3: The brute-force search algorithm.
Input: r, the attacker's capability;

P, the set of all sensing measurements;
Output: Set F that contains all sets of feasible measurements.

1 for each of
(
N
r

)
bad data combinations, PB do

2 if P\PB are consistent then
3 G = P\PB; //G is the set of good measurements;
4 Calculate the state vector, x, based on G;
5 for each measurement Pi ∈ PB, 1 ≤ i ≤ r do
6 if ||Pi −HPix|| ≤ ϵ then
7 G = G+ Pi;

8 F = F ∪G;

3.5 Evaluation

In this section, we will evaluate our algorithm by comparing it with IRIS. First, we will

present a concrete example to show the process of COI, and compare with IRIS using

different Nmin. Next, we will set up a simulation for cooperative attacks, and statistically

compare the performance between our algorithm and IRIS.

3.5.1 An Example

In section 3.4.1, we showed a counter example in which more than half (four out of seven)

sensing measurements are compromised by the attacker and there is no measurement

error. Here we detail an example with measurement errors and fewer compromised sen-

sors. Our purpose here is to show the process of COI and point out why IRIS may not

work correctly.

System setting: The transmission power P0 at the reference distance d0 is 5dB. The

radius of the secondary network is about 1km, and the distance between the secondary
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network and the primary transmitter is 5km. There are eight sensors, whose distances

away from the primary transmitter are listed in Table 3.1. When there is no measurement

error and the primary user is active, sensors will get perfect reports, which are marked

as perfect in Table 3.1. The column with noise shows the reports with some random

noise. Now suppose an attacker has compromised three sensors, sensors 5, 6, and 7,

and changed their values to those listed in column compromised in Table 3.1.

Table 3.1: The measurements from sensors before and after the attack.

Sensor i Distance di perfect with noise compromised

1 4.46 −113.01 −112.81 no change
2 4.62 −113.62 −113.27 no change
3 4.90 −114.64 −114.42 no change
4 5.08 −115.27 −114.94 no change
5 5.20 −115.68 −115.36 −120.18
6 5.44 −116.46 −116.23 −120.96
7 5.72 −117.33 −117.23 −121.83
8 5.88 −117.81 −117.55 no change

By applying our algorithm, it finds four feasible solutions in order, as shown in Table

3.2. By applying IRISwith differentNmin, whereNmin is the number of required remaining

reports after elimination, we get the results shown in Table 3.3.

Table 3.2: Feasible solutions from modified COI. CS stands for compromised sensors.

order # of CS CS P0 α

1 6 {2,3,4,5,6,8} 133.4 8.3

2 5 {1,2,3,4,8 } 0.4 4.0

3 4 {5,6,7,8} 1.8 3.9

4 3 {5,6,7} 4.9 4.0

Using the data before the attack, we get the original state vectorP = [P0, α] = [5.0, 4.0].

As we can see from Table 3.3, no matter what Nmin is, IRIS eliminates both good mea-

surements and compromised measurements, and the calculated P0 is far from the original

one. However, our algorithm can find the exact correct solution if we assume the attacker
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Table 3.3: The transmission power with different Nmin.

Nmin Compromised sensors P0 α

7 {8} 168.5 9.5

6 {8,4} 171.1 9.6

5 {8,4,3} 162.2 9.3

4 {8,4,3,5} 155.9 9.1

3 {8,4,3,5,6} 143.0 8.7

2 {8,4,3,5,6,2} 133.4 8.3

can at most compromise three sensors, shown as the 4th feasible solution in Table 3.2. If

we assume the attacker can at most compromise four sensors, there will be two feasible

solutions, the 3rd and 4th in Table 3.2. In this case, the center node has to rely on some

verification approaches to filter out one of them. Nevertheless, our algorithm does not

miss the correct solution.

3.5.2 Statistical Comparison

In this subsection, we statistically compare the performance of our algorithm with that of

IRIS. We first consider a network with with the size of N = 40 sensors. The radius of

the secondary network is about 2km, and the nodes are randomly distributed inside the

circle. The distance between the secondary network and the primary transmitter is 8km.

Before any attack, we introduce some random noise to all sensing reports; the noise for

each sensing report is less than 1% of the original sensing report. Then we randomly

compromise ncom of N sensors and inject cooperative bad sensing reports. ncom varies

from 1 to 20. For each value of ncom, we run the simulation n = 1000 times and count

the following numbers: (1) n1, the number of times that IRIS gets the nearly correct P0;

(2) n2, the number of times that IRIS identifies the right set of compromised sensors and

thus gets the correct P0; (3) n3, the number of times that our algorithm gets the nearly

correct P0; (4) n4, the number of times that that our algorithm identifies the right set of

compromised sensors and thus gets the correct P0. For our algorithm, we evaluate three
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cases with h = 1, h = 2 and h = 3. We set Nmin = 20 in IRIS and r = 20 in our algorithm.

After obtaining all the counts, we calculate the accuracy ratio using two different crite-

ria. The first criterion is to check the performance of P0 detection. If the resulting power

lever is within the range of [0.9, 1.1] of the real P0, we count it as a correct detection. The

accuracy ratios for IRIS and our algorithm are n1/n and n3/n, respectively. The second

criterion is to check whether all compromised sensors are identified, and the accuracy

ratios for IRIS and our algorithm are n2/n and n4/n, respectively. Also, we examine the

time delay of our algorithm. All the results are summarized in Figure 3.6, Figure 3.7 and

Figure 3.8.
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Figure 3.6: P0 detection accuracy comparison.

Figure 3.6 shows P0 detection accuracy, and we have the following observations. (1)

When 1/3 of all sensors or less are compromised, IRIS and our algorithm work identically

and both yield nearly 100% accuracy. (2) When more sensors are compromised, our

algorithm demonstrates improved performance over IRIS by a noticeable margin. For

instance, when ncom = 17 our algorithm improves IRIS by more than 20% for all three h

values. (3) When half of all sensors (Ncom = 20) are compromised, our algorithm also

performs poorly. The accuracy ratio is only about 50%, regardless of the value of h. This

is actually what Theorem 1 indicates; because there are two feasible solutions with the

same number of compromised sensors and our algorithm picks one of them, the ratio is
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Figure 3.7: Identification accuracy comparison.
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Figure 3.8: Processing time.

on average 50%. (4) The case with h = 2 is almost identical to that with h = 3, which

coincides with the statement in [41] that h = 2 is empirically enough.

Figure 3.7 illustrates the identification accuracy. All ratios for ncom > 13 are less than

those in Figure 3.6, indicating that for both algorithms they may not identify the correct

set of compromised sensors even though they obtain the correct P0. We also can see

that the margin between the case with h = 1 and the case with h = 2 is larger than that in

Figure 3.6. The margin between the case with h = 2 and the case with h = 3, however,

is still very small, even though it is slightly larger than that in Figure 3.6.

Figure 3.8 shows the processing time for different values of h. Since the processing
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time for IRIS is less than 60 milliseconds in our simulation, we do not plot it in the figure.

Our simulations are run on an Intel Xeon CPU at 3.07GHz with MATLAB. As we can see,

for the case with h = 1 and the case with h = 2, the processing time is within 2 seconds.

For the case with h = 3, when ncom ≤ N/3, the time is still within 2 seconds; as ncom

increases, the time goes up to 18 seconds. We can also see, when ncom ∈ [N/5, N/2],

the time increases exponentially, indicated by the linear fitting in the log-scaled figure. In

our algorithm, we set a time threshold t0 and h = 3. The algorithm may not finish all three

stacks. For instance, if we set t0 = 2 seconds, it may only finish the first two stacks and

terminate during processing the third stack. No matter whether or not it finishes all the

stacks, our algorithm will complement IRIS, since it starts with IRIS solution and then tries

to find other possibilities.

We are also interested in the detection accuracy and identification accuracy with dif-

ferent values of N . Figure 3.9 and Figure 3.10 show P0 detection accuracy with N = 20

and N = 60, respectively. And Figure 3.11 and Figure 3.12 show the identification accu-

racy with N = 20 and N = 60, respectively. Combining with Figure 3.6 and Figure 3.7,

we can see that IRIS always drops sharply when ncom is within the range [N/2− 5, N/2],

while our algorithm only drops sharply when ncom is 1 or 2 away fromN/2, especially with

h = 3. That is, for each algorithm with different values of N , the drop-off of the accuracy

starts at the same value away from N/2, rather than the percentage of N .
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Figure 3.9: P0 detection accuracy compari-
son (N=20).
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Figure 3.10: P0 detection ac-
curacy comparison (N=60).
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Figure 3.11: Identification accuracy com-
parison (N=20).
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Figure 3.12: Identifica-
tion accuracy comparison
(N=60).

3.6 Conclusion

In this work, we study the security problem providing a trustworthy and reliable com-

munication network in cyber-physical systems. We notice that an existing algorithm for

cooperative spectrum sensing in cognitive radio networks, called IRIS, is vulnerable to

cooperative attacks. To complement IRIS, we propose a modified COI algorithm to en-

hance spectrum sensing performance. We also present a theorem to show uncertainties

under a cooperative attack. Our proposed algorithm can be flexibly adjusted to meet time

delay requirements. We intensively evaluate our algorithm with simulations, and the re-

sults show that our algorithm improves the detection accuracy rate noticeably compared

to IRIS.
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Chapter 4

Preserving Secondary Users'

Privacy in Cognitive Radio

Networks

In this chapter, we continue to investigate cognitive radio networks while with a focus on

privacy, which is another important aspect of research in the communication networks of

cyber-physical systems (CPS). Specifically, we are interested in secondary users' privacy

in cognitive radio transactions, which has been ignored by researchers for a long time.

4.1 Introduction

Cognitive radio has emerged as a fundamental approach in improving the utilization of

spectrum resource through dynamic spectrum sharing. As a key technology in wireless

communication, cognitive radio enables secondary users (SUs) to opportunistically share

the licensed spectrum with primary users (PUs). To make the spectrum sharing attrac-

tive, it is essential to design incentive mechanisms for both PU and SU. It is reasonable

that the owner of the licensed spectrum, i.e., PU, charges SU whenever the latter is utiliz-

ing licensed spectrum. Recently, several approaches, such as game theory and auction
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theory, have been applied to this topic, maximizing either PU's gain or the social wel-

fare. However, SU's privacy in cognitive radio transactions has been neglected or left

untouched.

In a typical cognitive radio transaction, SU's payment to PU depends on SU's detailed

usage information, such as when and how long the licensed spectrum has been utilized.

PU needs this usage information to calculate or verify the payment, but detailed usage

information is sensitive to SU and the disclosure of this information may compromise SU's

privacy. Therefore, protecting PU's interest and preserving SU's privacy simultaneously

becomes very challenging. To the best of our knowledge, none of the existing work has

addressed this problem in cognitive radio transactions.

In this chapter, we propose a novel privacy-preserving mechanism for cognitive radio

transactions [48]. This mechanism not only preserves SU's privacy but also protects PU's

interest. In this mechanism, PU only knows a little portion of SU's sensitive information

during a billing period with the result that SU's privacy is preserved. At the same time,

PU knows the total payment for a billing period and is guaranteed that the payment is

correctly calculated and PU's interest is protected. This mechanism employs the commit-

ment scheme and the zero-knowledge proof. At the end of a billing period, SU commits

all detailed usage information and the payment for each utilization instance, and provides

a zero-knowledge proof for each utilization instance that the payment is correctly calcu-

lated. These commitments and proofs, along with the total fee, are sent to PU. Due to the

hiding property of the commitment scheme, the commitments do not reveal any informa-

tion about the detailed usage information. Due to the binding property of the commitment

scheme, SU cannot deny the values that are used to create the commitments. Further-

more, by verifying the zero-knowledge proofs provided by SU, PU is able to verify that

the payment for each utilization instance is correct. To prevent SU from committing fraud,

such as choosing not to submit all utilization instances or submitting false utilization in-

stances, we introduce a random-checking monitor that can provide some ground-truth

information on the spectrum utilization status. PU can opportunistically query the monitor
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to ask for a few pieces of ground-truth information, and use this information to challenge

SU. Once SU is challenged, it must provide proofs to match the random-checking infor-

mation.

Our main contributions in this chapter are three-fold. First, we have pointed out an

important security problem in cognitive radio literature, preserving SU's privacy, which has

been neglected for a long time. Second, we are the first to address this problem and have

proposed a privacy-preserving mechanism to protect PU's interest and preserve SU's

privacy at the same time. Third, we have implemented our mechanism and evaluated its

performance.

The rest of chapter is organized as follows. Section 4.2 is the related work. Section 4.3

describes our privacy-preserving model, including threat model, trust model, and system

architecture. In Section 4.4, we review some preliminaries and construct our privacy-

preserving protocol in detail. In Section 4.5, we present the security analysis. In Section

4.6, we propose the monitoring scheme and examine its effectiveness. We implement

and evaluate our proposed protocol in Section 4.7, and conclude this work in Section 4.8.

4.2 Related Work

Cognitive radio is the key approach that allows SUs to opportunistically access the li-

censed spectrum owned by PUs through spectrum sensing [19, 29, 30, 40, 47, 69]. Here

we will review some work on cognitive radio transactions, and discuss some privacy and

security issues in cognitive radio market.

4.2.1 Cognitive Radio Transaction

In a cognitive radio network with incentive mechanism, PU wants to maximize its revenue,

and SU wants to maximize its utility, which is usually the gain from the wireless service

minus the payment. Therefore, cognitive radio pricing is an indispensable component for

incentive cognitive radio networks, and has been addressed by many researchers, such
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as through auction models [13, 42, 62]. In this work, our focus is on SU's privacy, which is

neglected in auction models, rather than pricing itself. We assume that PU announces a

pricing policy to all SUs, similar to the uniform pricing model in [13]. Then every SU who

utilizes the licensed spectrum pays PU according to the pricing policy. Our interest is to

hide SU' detailed usage information from PU and thus preserve SU' privacy.

4.2.2 Privacy and Security

Usage privacy usually relates to when, where and how a consumer, such as a person

or an object, is consuming a non-free resource. The owner of the resource may need

the detailed usage information to calculate a payment to charge the customer, while the

detailed information may breach the customer's privacy. This dilemma exists in many

areas, such as smarter metering and vehicular electronic tolling. Privacy-preserving so-

lutions have been proposed in smart metering [51], vehicular tolling [4, 44], and other

topics [56, 63, 74], and can potentially be applied to some attacks in smart grid and social

networks [45, 46, 64].

Cognitive radio marketing faces the same dilemma. Usually SU is charged based on

its spectrum usage profile, such as when and how long it utilizes a certain channel, while

the usage profile inevitably breaches its privacy. Though much work has been done on

the incentive mechanism for cognitive radio, to the best of our knowledge, SU's privacy,

which is related to fine-grained usage profile has never been addressed.

4.3 Privacy-Preserving Model

We consider a typical cognitive radio network, which consists of a primary user (PU)

and multiple secondary users (SUs). The PU has some non-utilized spectrum to sell to

SUs. In a cognitive radio transaction, PU announces the pricing policy for the non-utilized

spectrum, typically a price function depending on frequency, bandwidth, time, etc. SU
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utilizes some spectrum and pays PU according to the pricing policy at the end of a billing

period, such as a day or a month.

4.3.1 Adversary and Threat Model

In this work, we assume secure communication. Messages among all entities are signed

by the senders and can be verified by the recipients. Our focus in this work is on PU's

interest and SU's privacy. We consider the following threats from the prospective of both

PU and SU.

PU is concerned about the following threats:

T1. SU does not report all its utilization data;

T2. SU reports false utilization data, such as the time when it starts to use the licensed

spectrum and the time duration of one utilization instance;

T3. SU uses incorrect price to calculate the subfee for a utilization instance and thus

reports false subfee;

T4. SU reports false total fee for a billing period.

SU is concerned the following threat:

T5. PU learns a large amount of the detailed usage information to breach SU's privacy.

4.3.2 Design Goals

There are two goals for our privacy-preserving mechanism. The first one is to preserve

SU's privacy. The second one is to protect PU's interest.

SU should never send its detailed utilization information to PU in plain text. The de-

tailed utilization information, such as when (time) and how (frequency, bandwidth) SU

utilizes the licensed spectrum, compromises SU's privacy. Instead of the utilization infor-

mation in plain text, SU commits to the utilization information and sends the commitments

78



to PU. As we explain later, the commitments do not disclose any information about the

committed values; thus, SU's privacy is preserved.

At the same time, PU's interest must be protected. PU must be ensured that SU

does not commit fraud. Even though PU only obtains the commitments of SU's utilization

information, it must have a way to verify the payment through the commitments. We resort

to a homomorphic commitment scheme, which can hide SU's utilization information and

help PU verify the payment.

4.3.3 Trust Model

To achieve the design goals, trustworthy information about SU's utilization is required.

Otherwise, there is no way for PU to determine whether SU commits fraud. Hence, we

introduce a trusted random-checking monitor, which wakes up to check the utilization

status of the spectrum in a way that SU cannot predict. The monitor is trusted, but it

cannot scan all the spectrum channels all the time due to limited monitoring resources or

cost concern. For instance, the monitor may not be able to cover all spectrum channels

at the same time due to its functionality constraints, or the cost concern may refrain the

monitor from monitoring all channels all the time even it is capable to do so.

We assume that SU does not know the pattern how the monitor scans all channels.

Since the monitor records some information on the status of spectrum utilization, SU who

does not report or reports false information has the risk to be caught. Once a fraud is

caught, we can impose a high penalty to deter SU from lying. Therefore, the monitor will

enforce SU to report true spectrum utilization, i.e., when and how long SU user has used

a certain channel.

4.3.4 System Architecture

The system model comprises three components, Primary User (PU), Secondary User

(SU), andMonitor (M), as shown in Figure 4.1. PU announces pricing policy to SU, which
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is in the form of segments, with each segment representing the unit price for a certain

channel in a period of time. SU calculates a subfee for each utilization instance based on

the pricing policy if he utilizes a certain channel for a period of time. At the end of a billing

period, SU sums up all the subfees to obtain a total fee and sends it to PU, together with

the commitments of information in each utilization instance. PU only obtains the informa-

tion of the total payment from SU, but it does not know when and how long SU has utilized

a channel, nor does it know which channel SU has utilized. In this way, SU's privacy is

preserved. To check whether SU commits fraud, PU can ask for some observations from

the monitor M, and require SU to provide the corresponding commitments. If the obser-

vations and commitments are matched, then SU is considered honest; otherwise, a high

penalty is imposed. We limit the number of random-checking observations that a primary

user can ask for during a billing period such that only a limited amount of SU's private in-

formation is leaked. To guarantee the integrity of messages, all three entities implement

a signature scheme such that any message cannot be forged.

Secondary UserPrimary User

Monitor

Figure 4.1: System architecture for privacy-preserving pricing in cognitive radio network.

Remark: In the above architecture, we introduce a new entity, the monitor M, into the

system to randomly check whether SU is utilizing a channel. Alternatively, we may let

SU carry out the monitoring functionality [68]. When an SU transmits a message over

a licensed channel, it concatenates the message and the current time, and hash the

concatenated message. Then the SU signs the hashed value. Other SUs nearby can

capture the signed message in the corresponding channel. When PU asks an SU ui for

utilization instances of another SU uj , user ui can provide user uj 's signature together
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with the corresponding time to PU. With the signature, user uj cannot deny its utilization

of the licensed spectrum. To motivate SU to participate in monitoring, PU can offer some

rewards to SUs who provide monitoring information.

4.4 Protocol Construction

In this section, we will first review some preliminaries that are extensively used in our

privacy-preserving protocol. Then, we will show our protocol in detail.

4.4.1 Preliminaries

4.4.1.1 Signature Scheme

A signature scheme consists of three fundamental components, key generation (Keygen),

signature generation (Sign), and verification (Verify). Keygen generates a key pair (sk,

pk), where sk and pk are the secret key and the public key, respectively. Sign(sk, m)

outputs a signature ms on message m. Verify(pk, ms, m) outputs accept if ms is a valid

signature of message m; otherwise, it outputs reject. A signature must be unforgeable

such that an adversary should not be able to obtain the signature ms on message m

unless he knows the secret key sk or has previously obtained a signature on m.

4.4.1.2 Commitment Scheme

A commitment scheme consists of three fundamental phases, commitment setup phase

(ComSetup), commit phase (Commit), and open phase (Open). ComSetup generates

the parameters of the commitment scheme, par. Commit(par, x) outputs a commitment

cx to x and auxiliary information openx. Open(par, cx, x, openx) outputs accept if cx is

the commitment to x and openx is the corresponding auxiliary information. A commitment

scheme has two important properties, hiding and binding. The hiding property guaran-
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tees that cx does not reveal any information about x, and the binding property guarantees

that cx cannot be opened to values other than x.

A commitment scheme is said additively homomorphic if, given two commitments cx1

and cx2 with openings openx1 and openx2 respectively,Open(par, cx1 ·cx2 , x1+x2, openx1+

openx2) outputs accept.

4.4.1.3 Zero-knowledge Proof

A zero-knowledge proof of knowledge is a method for a prover to prove to a verifier that

a statement is true, without revealing anything other than the veracity of the statement. A

zero-knowledge proof of knowledge has three important property, completeness, sound-

ness, and zero-knowledge. Completeness guarantees that an honest verifier will be con-

vinced by an honest prover if the statement is true. Soundness guarantees that no mali-

cious prover can convince a verifier that a statement is true if it is actually false, except with

some negligible probability. Zero-knowledge guarantees that the verifier learns nothing

other than the statement is true.

For instance, a prover has a value x and its commitment cx = gxhopenx , where g and

h are parameters of a commitment scheme. He sends only cx, g, and h to a verifier. By

means of zero-knowledge proof, the prover can prove to the verifier that he knows the

committed value x and its corresponding open message openx, without revealing x and

openx. During a typical proof, the verifier inquires the prover with some random challenge,

and the prover makes a response to the challenge. Then the verifier verifies some equal-

ities. This interactive proof can be turned into non-interactive zero-knowledge proof via

Fiat-Shamir heuristic [11].

4.4.2 Construction Sketch

As in Figure 4.1, there are in total three entities in the system: primary user (PU), sec-

ondary users (SUs), and a random-checking monitor (M). Our privacy-preserving protocol
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has three stages, i.e., initialization, transaction, and random-checking.

4.4.2.1 Initialization

At the beginning, each entity generates a key pair for signature scheme, i.e., (skPU , pkPU )

for PU, (skSU , pkSU ) for SU, (skM , pkM ) for the monitor M. Each entity distributes its own

public key, and stores the public keys from other entities. With these key pairs, each

entity can verify the origin and integrity of each message received. SU also generates the

parameter par for its commitment scheme, and share par with PU.

When PU has some licensed spectrum f (such as a channel) to sell, he announces

tuples in the form of < Tbi , Tei , f >, each of which denotes that a certain SU may use

spectrum f in the time interval [Tbi , Tei ]. PU also establishes a function F : (Tbi , Tei , f)→

Φ that maps every tuple < Tbi , Tei , f > to a price pi ∈ Φ, where pi is the unit price

($/second) for spectrum f in the time interval [Tbi , Tei ]
7. PU signs the pricing policy Φ to

get Φs, where Φs = Sign(skPU ,Φ), and sends (Φs,Φ) to SU.

When SU receives Φs, it runs Verify(pkPU ,Φs,Φ). If the verification outputs accept,

SU stores the pricing policy Φ; otherwise, SU notifies PU that the message is tampered.

4.4.2.2 Transaction

When SU utilizes a segment of the spectrum with frequency f , it records the starting time

ti and the time duration△ti, denoted as a tuple < ti,△ti, f >, which is called a utilization

instance. First, it determines which pricing policy to use. Suppose Tbj ≤ ti ≤ Tej , then

the unit price is pj . Then, it calculates the payment feei = pj△ti
8. Next, it computes

a payment tuple ui = (cti , c△ti , cf , cfeei , cpj , πi), where cx is a homomorphic commitment

of x with auxiliary information openx and parameter par, x ∈ {ti,△ti, f, feei, pj}, πi is

the non-interactive zero-knowledge proof that (1) SU knows all openings of all commit-
7Here we assume a linear pricing policy. Our scheme can be adopted to other complicated pricing policy,

such as cumulative policy in [51].
8When △ti spans two pricing policies, we break this segment into two segments at the boundary of two

pricing polices.
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ments; (2) feei committed in cfeei is the product of pj and △ti committed in cpj and c△ti ,

respectively; (3) SU possesses a C-L signature [5] on pj computed by PU that the price

pj belongs to Φ and it is the right one to calculate the subfee feei.

Suppose SU has utilized n tuples of spectrum resources in a billing period. At the

end of the billing period, SU adds up all the subfees of n tuples to obtain a total fee

feetotal =
∑n

i=1 feei, and adds up all the openings to obtain an opening for the total fee,

openfeetotal =
∑n

i=1 openfeei . Then, SU composes a payment message m that consists

of (feetotal, openfeetotal , id) and all the payment tuples ui = (cf , cti , c△ti , cfeei , cpj , πi), i.e.,

m = (feetotal, openfeetotal , id, u
n
i=1). SU signsmessagem to obtain its signaturems, where

ms = Sign(skSU ,m) and sends (m,ms) to PU.

When receiving (m,ms), PU first runs Verify(pkSU ,ms,m) to verify SU's signature

on the message m. If the verification outputs accept, PU then verifies the proof πi in

each payment tuple ui, ∀i ∈ [1, n]. If all the verifications output accept, PU times up

commitments cfeei of all payment tuples to obtain the commitment cfeetotal =
∏n

i=1 cfeei . At

the end, PU checks whether openfeetotal is a valid opening by running Open(par, cfeetotal ,

feetotal, openfeetotal). If it outputs accept, PU will query the monitor M as described below.

4.4.2.3 Random-checking

The monitor, M, scans to check whether a SU is utilizing the spectrum with frequency f

(such as a channel). For each observation, it generates a signed statement ϕ that an SU

with its identity id is utilizing the spectrum with frequency f at time tc, i.e., ϕ = (tc, f, id).

To check whether a certain SU submits all payment tuples and the payment for each tuple

is correctly calculated, PU sends a request message r = (request, id), together with its

signature rs = Sign(skPU , r), to M to ask for one statement ϕ for SU with identity id.

When receiving the request, M verifies PU's signature by running Verify(pkPU , rs, r). If

the verification is accepted, M sends one piece of statement ϕ with signature, i.e., ϕs =

Sign(skM , ϕ), to PU. Then PU relays ϕs to SU. SU first verifies whether ϕs has a valid
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signature from M. If the signature is valid, it searches among its payment tuples and finds

the one with the time domain [ti, ti + △ti] such that ti < tc < ti + △ti. Once the tuple

is found, SU will send all the openings for all the commitments in that payment tuple in

a signed message, os = Sign(skSU , openti , open△ti , openf , openfeei). Then PU can verify

whether the SU has submitted the payment tuple corresponding to ϕ and whether the SU

computes the price feei correctly. PU can request more than one statements at a time.

However, the number of statements must be limited. If SU commits fraud, a penalty will

be imposed.

The whole protocol is shown in Figure 4.2.

SU PU M

transaction:

initialization:

random−checking:

On every tuple < ti,△ti, f >:

(par, skSU , pkSU , pkPU , pkM) (par, skPU , pkSU , pkPU , pkM ) (skM , pkSU , pkPU , pkM )

ms = Sign(skSU ,m)

feei = pj△ti

feetotal =
∑n

i=1
feei

m = (feetotal, openfeetotal , id, u
n
i=1

)

openfeetotal =
∑n

i=1
openfeei

(ms,m)

(Φs,Φ)
Verify and store Φ Φs = Sign(skPU ,Φ)

Open(par, cfeetotal , feetotal, openfeetotal)

cfeetotal =
∏n

i=1
cfeei

Verify proof πn
i=1

ui = (cti , c△ti , cf , cfeei , cpj , πi)

Verify(pkSU ,ms,m)

r = (request, id)

rs = Sign(skPU , r)
Verify(pkPU , rs, r)

φs = Sign(skM , φ)
(φs, φ)

(φs, φ)Verify(pkM , φs, φ)

os = Sign(skSU , o)

(rs, r)

(os, o)
Verify(pkSU , os, o)

Find < ti,△ti, f > containing φ

o = (openti , open△ti , openf , openpj , openfeei , ti,△ti, f, pj , feei)

Open(par, cx, x, openx), x ∈ {ti,△ti, f, pj, feei}

Verify < ti,△ti, f > containing φ

Verify feei = pj△ti

Figure 4.2: Structure of the protocol. SU=Secondary User, PU=Primary User, M=Monitor.
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4.5 Security Analysis

In this section, we will analyze whether our protocol in Section 4.4 can thwart all the threats

mentioned in Section 4.3.1.

4.5.1 Privacy and Interest

Claim 1: Our protocol can defend against threats T1, T2, T3, and T4, thus the primary

user's interest is protected.

The random-checking monitor and the imposed penalty defend against both T1 and

T2. If a secondary user purposely chooses not to report some of its utilization data, it has

the risk to be caught by the monitor, and the imposed penalty once being caught deters a

secondary user from committing T1. Similarly, a secondary user has the risk to be caught

by the monitor if it commits T2 by reporting false utilization data. Regarding T3, the proof

that a secondary user possesses a C-L signature on the pricing policy makes sure that the

correct unit price is used to calculate the subfee for a utilization instance. Furthermore, a

secondary user cannot commit fraud T4 once all subfees are correct. The homomorphic

property of the commitments scheme can guarantee that the total fee is the sum of all the

subfees. 2

Claim 2: A secondary user's privacy is preserved except that information in the re-

sponses of queries is disclosed.

At the end of a billing period, the secondary user only sends the total fee and its

id in plain text to the primary users. All other information is sent as commitments and

zero-knowledge proofs. As we know, the hiding property of a commitment and the zero-

knowledge property of a zero-knowledge proof guarantee that all information in commit-

ments and zero-knowledge proofs is not revealed to the primary user. The only informa-

tion disclosed is from the responses of queries when the secondary user responds to the

queries made by the primary user. 2
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4.5.2 Discussion

In our protocol, besides the information in the responses of queries, the primary user can

also learn the number of utilization instances. For each utilization instance, the secondary

user calculates a subfee and sends the commitment of the subfee to the primary user.

By counting the number of subfee commitments, the primary user learns the number of

utilization instances. Though this information does not reveal any detailed information in

each utilization instance, it does disclose how often a secondary user utilizes the licensed

spectrum. The primary user can also infer whether a secondary user is more active than

another one. To hide the number of utilization instances, the secondary user can submit

some dummy utilization instances, such as some tuples < ti,△ti, f > with △ti = 0. In

this way, the primary user cannot learn the exact number but a upper bound of utilization

instances. To even hide the upper bound, i.e., to make the upper bound meaningless,

each secondary user can submit a large amount of dummy instances. Too many dummy

instances, however, introduce heavy overhead, especially for less active secondary users.

Since the responses of queries disclose secondary users' information, we must limit

the number of queries a primary user can make on an individual secondary user. And

we assume that the information disclosed in the limited number of queries is tolerable. If

even this limited information is not tolerable, we can hide the information disclosed in the

responses of queries by changing a little bit the system architecture. In the architecture

shown in Figure 4.2, the monitor does not communicate with the secondary user. We can

add a communication link from the monitor to the secondary user. When the primary user

queries the monitor, the monitor randomly chooses a statement ϕ, for instance, that the

secondary user is utilizing a channel at time tu. Instead of sending tu to the primary user

as in our protocol, the monitor only sends the commitment of tu to the primary user. At

the same time, the monitor sends the opening message of the commitment of tu to the

secondary user. Then the secondary user proves to the primary user by interval check

and zero-knowledge proof that (1) it knows the opening of commitment of tu and (2) tu is
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a point of time in one of its utilization instances submitted. Even there is no link from the

monitor to the secondary user, we can utilize public key cryptography to let the primary

user relay tu to the secondary user; the monitor encrypts tu with the secondary user's

public key, and only the secondary user can decrypt it since no other entity has its secret

key.

4.6 Random Checking

As described above, random checking plays an important role in our protocol. In this

section, we will first propose rules for the monitor to efficiently capture secondary users'

utilization instances. Then we will analyze the effectiveness of random checking. Specif-

ically, we show that the monitor can capture enough random checking instances even

when the probability to capture each individual instance is low, and the captured random

checking instances can considerably catch a secondary user who commits fraud.

4.6.1 Monitoring Scheme

Suppose a primary user has n channels of licensed spectrum to share with l secondary

users. And there is one monitor that can only monitor one channel at a time. Our problem

is that what strategy the monitor should apply such that the monitor can capture as many

utilization instances among all secondary users and all channels.

4.6.1.1 Problem Statement

Suppose that the traffic on all channels is the same. We assume that on each channel

both the duration of busy time and the duration of idle time follow exponential distributions

with parameter λB and λI , respectively. The average busy and idle times are denoted by

TB = 1/λB and TI = 1/λI , respectively. We also assume that when a monitor jumps

from one channel to another, there is a switch cost; that is, it wastes a period of time Tc.
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The objective is to capture as many utilization instances as possible in a given period of

time T0 among all secondary users. As the monitor does not know how secondary users

choose channels and when they utilize the chosen channels, we assume that secondary

users randomly choose channels and utilization instances can be randomly distributed on

each channel.

4.6.1.2 Monitoring Rules

It is hard to give an optimal solution to the above problem deterministically. Here we

propose some heuristic rules to control the monitor. Remember that a random check

instance is a point of time that a certain secondary user is utilizing a channel. The monitor

can choose to either stay on the current channel or switch to another channel. Our intuition

is to let the monitor make a better choice between stay and switch. Suppose at a time

the monitor is not scanning any channel, and now it jumps to a channel to start scanning.

Then the monitor have to decide what to do after jumping to a channel. There are in total

two scenarios: (i) the monitor jumps to a channel currently busy; (ii) the monitor jumps to

a channel currently idle.

•When amonitor jumps to a channel which is currently busy, it will stay until it is able to

figure out which secondary user is utilizing that channel. After the monitor has determined

the secondary user's identity, i.e., captured a random-check instance, it will determine

whether to stay on the current channel or switch to another channel. If it chooses to stay,

the probability that it encounters a busy channel during Tc, pstayb , is:

pstayb
=

∫ Tc

0

∫ y

0

λBλIe
−λBxe−λI(y−x)dxdy =

{
1− 1

λB−λI
(λBe

−λITc − λIe
−λBTc) if λB ̸= λI

1− λBTce
−λBTc − e−λBTc if λB = λI

(4.1)

In the case of switch, the monitor wastes Tc of time for monitoring. At the time point of
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Tc, the probability that the channel is busy, pswitch, is:

pswitch =
TB

TB + TI
(4.2)

We can obtain the critic switch cost, T ∗
c , by setting pstayb = pswitch. When Tc > T ∗

c ,

we have pstayb > pswitch; the monitor should continue to stay on the channel that it is

currently monitoring. When Tc < T ∗
c , we have pstayb < pswitch; the monitor should switch

to another channel which has been monitored less frequently. When Tc = T ∗
c , we have

pstayb = pswitch; the monitor can choose to either stay on the current channel or switch to

another channel.

•When the monitor jumps to an idle channel, we can obtain another critic switch cost

T ∗′
c similarly. In the case of stay, during the time period of Tc, the probability that the

monitor encounters a busy channel, pstayi , is:

pstayi =

∫ Tc

0
λIe

−λIxdx = 1− e−λITc (4.3)

In the case of switch, at the time point of Tc, the probability that the channel is busy,

pswitch, is same as Eq(4.2). By setting pstayi = pswitch, we get T ∗′
c = TI ln

TB
TB+TI

. When

Tc > T ∗′
c , we have pstayi > pswitch; the monitor should continue to stay on the idle channel

that it is monitoring. When Tc < T ∗′
c , we have pstayi < pswitch; the monitor should switch

to another channel which has been monitored less frequently. When Tc = T ∗′
c , we have

pstayi = pswitch; the monitor can choose to either stay on the current channel or switch to

another channel.

We summarizes the rules as follows:

1. When a monitor jumps to a channel that is currently busy, it stays until it identifies

the secondary user that is utilizing the channel. Then the monitor chooses to stay

or switch according the values of Tc and T ∗
c as described above;

2. When a monitor jumps to a channel that is currently idle, it chooses to stay or switch
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according Tc and T ∗′
c as described above.

4.6.2 Random-check Effectiveness

Since the monitor cannot cover all the channels all the time, it only captures a portion

of the total utilization instance. Note that in Section 4.5, we assume that the random-

check mechanism refrains a secondary user from committing fraud. Here we analyze the

effectiveness of the random-check mechanism. We will show that a secondary user has

very high probability to be caught if it commits fraud even the monitor only captures a

limited number of random-check instances.

Let p be the probability that the monitor captures a secondary user in one second

interval when the latter is utilizing a channel. To simplify the analysis, we assume that

the probability is the same for all channels in the licensed spectrum. Let n be the total

time (in seconds) that a secondary user has utilized the licensed spectrum9. Let X be

the number of captures in n seconds. Note that a utilization instance may last far more

than one second, so it is possible that a utilization instance is captured by the monitor

more than once. Obviously, X follows the binomial distribution with parameter n and p,

i.e., X ∼ B(n, p). The probability mass function is:

Pr(X = k) =

(
n

k

)
pk(1− p)n−k (4.4)

The expected number of captures is E(X) = np. The probability that a secondary

user is captured at least k times in n second utilization is:

Pr(X >= k) = 1−
k−1∑
i=0

(
n

i

)
pi(1− p)n−i (4.5)

Figure 4.3 shows the relation between p and n when Pr(X >= 5) = 0.95. We can see

that n decreases almost exponentially as p increases. Even when p is as small as 0.01,

it just takes 300 seconds for the monitor to capture a secondary user at least 5 times.
9The secondary user could use any channel in the licensed spectrum.
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Therefore, it dose not take a long time before the monitor obtains considerable amount

of captures even the probability to capture a secondary user in one second is small.
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Figure 4.3: The relation between p and n when Pr(X >= 5) = 0.95.

Now we will show the probability with which a secondary user can be caught if it com-

mits fraud. Suppose a secondary user has utilized the licensed spectrum for n seconds,

and it only submits n − m seconds of data. We also assume the primary user queries

the monitor for k instances of random-check. The probability that the secondary user is

caught committing fraud is:

Pr[caught] = 1−
(

n− k

n−m− k

)
/

(
n

n−m

)
(4.6)

Figure 4.4 shows the relation between m and Pr[caught] when n = 200 and k = 5. We

can see that the more data a secondary user chooses not to submit, the higher chance

he will be caught. For instance, if a secondary user purposely chooses not to submit 20

second data (10% of total utilization data), it has about 41% of chance to be caught; if

it chooses not submit 50 second data (25% of total utilization data), it has about 77% of

chance to be caught. To refrain the secondary user from committing fraud, we can set

a penalty higher than the gain such that a rational secondary user would not choose to

commit fraud.
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Figure 4.4: The relation between m and Pr[caught] when n = 200 and k = 5.

4.7 Implementation and Evaluation

In this section, we will first present in detail our implementation of commitment scheme,

signature scheme, and zero-knowledge proof, which are intensively used in our protocol.

Then, we will evaluate the running time of our protocol.

4.7.1 Commitment Scheme

In the implementation of commitment scheme, we use Pedersen commitments [43]. Ped-

ersen commitments are theoretically hiding and binding, relying on a group G of prime

order p with generators g and h. Under this scheme, a commitment Cx to message x ∈ Zp

has the form of Cx = gxhox , where ox is an opening nonce chosen uniformly at random

in Zp. In our implementation, we use a group G based on bilinear pairing over elliptic

curves [55]. Here we say that the commitment scheme is done in ECC (Elliptic Curve

Cryptography) domain.

4.7.2 Signature Scheme

All messages are signed by the sender and verified by the recipient in our protocol. For

messages between the monitor and the primary user, and messages from the secondary
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user to the primary user, any unforgeable signature scheme can be used. In our imple-

mentation, we choose ECDSA signature scheme [21] in ECC domain. As to the signature

scheme for the message from the primary user to the secondary user, especially the pric-

ing policy, we utilize ECC version of C-L signature based on elliptic curve groups [5]. C-L

signature scheme [5] can not only compute a signature on a commitment message but

also provide zero-knowledge proof of knowledge of a signature on a committed value.

These properties are leveraged to ensure the primary user that the price used by the

secondary user during billing process is correct.

4.7.3 Non-Interactive Zero-Knowledge Proof

Recall that in the privacy-preserving protocol,the primary user sends the pricing policy in

plain text together with pricing policy signed by CL-signature scheme to the secondary

user. The secondary user then calculates the payment for each utilization instance (<

ti,△ti, f >) and sends the commitment of the payment back to the primary user. The

secondary user needs to use non-interactive zero-knowledge proof to prove that: (1) ti

is in an interval [Tbj , Tej ] such that Tbj ≤ ti ≤ Tej ; (2) the payment feei is the product

of pj and △ti; and (3) pj is indeed the price associated with < Tbj , Tej , f >. Therefore,

the basic building blocks are a non-interactive zero-knowledge proof that a committed

value lies in an interval, a non-interactive zero-knowledge proof that a committed value

is the product of two committed value, and a non-interactive zero-knowledge proof that a

committed value has a CL-signature.

4.7.3.1 Interval Check

Suppose we need to prove that a committed value x lies in an interval [a, b], i.e., a ≤ x ≤ b.

It is equivalent to prove that x − a ≥ 0 and b − x ≥ 0. To prove that an integer v >= 0,

we employ the non-interactive zero-knowledge proof by Groth [17]. It is well-known from
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number theory that 4v + 1 can be written as a sum of three squares if integer v is non-

negative.

In the proof in [17], integer commitment scheme is constructed with special RSA mod-

ulus (here we say RSA domain), in which the order of generators is unknown. However,

all the commitments in our protocol are constructed in ECC domain, where the order of

generators is known. We need first to convert a commitment in ECC domain into a com-

mitment in RSA domain. We then use non-interactive zero-knowledge proof to prove that

a commitment in ECC domain and a commitment in RSA domain commit to the same

value. Next we prove that the committed value in RSA domain is non-negative with the

non-interactive zero-knowledge proof mentioned above.

4.7.3.2 Proof of Multiplication

Giving commitments of pj , △ti, and feei, i.e., Cpj = gpjhopj , C△ti = g△tiho△ti , and

Cfeei = gfeeihofeei , we need to prove that feei = pj△ti. We adopt the notation introduced

by Camenisch and Stadler [6]. The proof is as follows:

NIPK{(feei, ofeei ,△ti, o△ti , pj , opj ) :

(Cfeei , ofeei) = Commit(par, feei) ∧

(Cpj , opj ) = Commit(par, pj) ∧

(C△ti , o△ti) = Commit(par,△ti) ∧

feei = pj△ti

}

In the above notation,NIPK stands forNon-Interactive Proof of Knowledge. The vari-

ables in the parenthesis, i.e., feei, ofeei ,△ti, o△ti , pj , opj , denote quantities whose knowl-

edge is being proven, while all other values are known to the verifier.
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4.7.3.3 Possession of a CL-signature

In the above proof of multiplication, it lacks of another piece of proof that pj is the correct

unit price that should be used. This is done by the proof of possession of a CL-signature

on pj . That is, the secondary user proves to the primary user that the former possesses

a CL-signature computed by the latter on < Tbj , Tej , f, pj > that states that pj is the unit

price to be paid for (Tbj , Tej , f). We implement the proof of knowledge of a CL-signature

on a commitment in [5].

4.7.4 Running time

We have implemented all the functionality required to the privacy-preserving protocol in

C. We use both pbc library [35] and GMP library [16]. Our platform is Intel(R) Xeon(R)

CPU at 1.02GHz on OPENSUSE operating system. We can measure the running time

for each individual block, such as ECC commitment, integer commitment, CL-signature,

proof of possession of CL-signature, proof of multiplication, and interval checking. All

blocks, except interval check, are done in ECC domain; the key size is 160 bits (192 bit

key for ECDSA). The interval check involves both ECC and RSA modulus; for ECC part,

the key size is still 160 bits, and for RSA part, the key size is 2048. These choices of key

sizes are believed to achieve high security. The running time for all fundamental blocks

is shown in Table 4.1.

We also measure the running time for pricing policy generation, proving a bill, and

verifying a bill, which is shown in Table 4.2.

We generate some synthetic data to simulate a real scenario. We assume that there

is a secondary user that utilizes licensed spectrum in a day. This secondary user can use

several channels while it can only use one at a time. We suppose that the time duration of

utilization instances follows an exponential distribution, and the time duration between two

utilization instances also follows an exponential distribution. We then generate different

traces for a secondary user. For the pricing policy, we introduce three linear policies, each
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Table 4.1: The running time of individual blocks.

Key size time (ms)
Sign a policy (ECC) 160 16

Verify a policy (ECC) 160 18

Generate commitment (ECC) 160 4.5

Verify commitment (ECC) 160 2.4

Prove interval check (ECC/RSA) 160/2048 30

Verify interval check (ECC/RSA) 160/2048 20

Prove possession of C-L signature (ECC) 160 20

Verify possession of C-L signature (ECC) 160 11

Prove multiplication (ECC) 160 4.9

Verify multiplication (ECC) 160 4.7

ECDSA (ECC) 192 1.2

Table 4.2: The running time of proof and verification.

Key size time per reading (ms)
policy generation 160 35

prove bill 160 100

verify bill 160 65

random checking 192 1.2

of which spans 8 hours. Table 4.3 shows the total time required for both the primary user

and the secondary user for different traces for a billing period of one day.

Table 4.3: The running time of one-day billing.

# of utilization instances PU (second) SU (second)
12 0.84 1.3

17 1.1 1.8

24 1.6 2.5

37 2.4 3.8

48 3.2 5.0

Discussion: The running time is not a concern at all, since most of the operations

can be processed in parallel. During a billing period, there may have many utilization
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instances. However, they are independent of each other. As a result, on both PU and

SU sides, data processing can be done in parallel in the granularity of utilization instance.

Furthermore, even inside a utilization instance, there are still probabilities for parallel pro-

cessing. For instance, on the SU side, all commitments can be done in parallel; on the

PU side, the verification of commitments can be done in parallel.

4.8 Conclusion

Privacy is an important aspect of research in cyber-physical systems (CPS) and their

communication networks. In this work, we improve the privacy of spectrum transactions

in cognitive radio networks. We propose a privacy-preserving protocol to protect both

entities in cognitive radio transactions. Specifically, we utilize a commitment scheme and

zero-knowledge proof to preserve secondary users' privacy, and use a random-checking

monitor to protect the primary users' interest. Furthermore, we formulate the monitoring

problem and analytically propose efficient rules to control the random-checking monitor

such that it can capture as many utilization instances as possible. Finally, we implement

our protocol and evaluate the performance. To the best of our knowledge, it is the first

work to address the privacy of secondary users in cognitive radio transactions.
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Chapter 5

Conclusion and Future Work

Cyber-physical systems (CPS) play an important role in modern society in various areas,

such as energy, aerospace, civil infrastructure, healthcare, manufacturing, transportation,

and entertainment. This dissertation explores security and privacy issues in CPS and

its communication networks, specifically in electric power systems and cognitive radio

networks.

First, we utilized a typical CPS as an example to show the potential cyber attacks

and how to defend against them. Specifically, we introduced the unidentifiable attack,

which requires relatively less effort compared to undetectable attacks, but is still capable

of misleading electric power systems to make incorrect operations. We then proposed an

optimization framework to defend against this new cyber attack. For this type of attack,

we investigated from both the view of an attacker and the view of the system operator,

i.e, how to efficiently launch an attack and how to respond to an attack, respectively.

We validated our optimization framework with extensive simulations by showing that our

strategies are efficient and realistic.

Next, we investigated the potential threats in communication networks for CPS. We

examined the cooperative spectrum sensing in cognitive radio networks, and pointed out

that an existing framework that detects bad data injection is problematic and works poorly

under deliberate data manipulation. We hence defined cooperative attacks, in which an
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attacker injects self-consistent bad data, and proposed a modified combinatorial opti-

mization identification algorithm to pinpoint the most likely compromised data. Finally, we

demonstrated the feasibility of cooperative attacks, and evaluated our algorithm with sim-

ulations, showing that our proposed algorithm was able to effectively improve the existing

framework.

Finally, we addressed an important privacy issue in CPS's communication networks.

We investigated the spectrum transactions in cognitive radio networks. To protect the

seller's interest and the buyer's privacy in spectrum sharing in cognitive radio networks,

we designed and implemented a privacy-preserving scheme by utilizing a commitment

scheme, signature scheme, and zero-knowledge proof. Our evaluation indicated that our

scheme performed well.

Based on our understanding and experience, it is challenging to thoroughly secure a

CPS. We hope and believe that the projects in this dissertation can serve as examples or

guidelines in securing CPS and its communication networks. And we also envision that

the following research directions can enrich and expand the security research in CPS and

its communication networks:

• Potential Attacks in CPS

In this dissertation, we only cover a typical CPS, i.e., the electric power system.

There are various CPS in our society, which may face many potential vulnerabilities

and attacks. Therefore, it is necessary to explore new vulnerabilities and design

countermeasures for different CPS. Taking the electric power system as an exam-

ple, besides bad data injection attacks, it also faces vertex and/or edge attacks10.

The failure of a vertex or an edge can cause devastating damage to the whole

power system. It is beneficial to have plans or countermeasures to respond to these

edge/vertex attacks. Another example would be body sensor networks, which are

emerging CPS that promise to enhance quality of life. Sensors in such networks
10The electric power system can be modeled as a graph, in which vertices are generators/consumers and

edges are transmission lines.
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usually measure sensitive and important physiological signals, and a successful at-

tack may lead to not only a patient's privacy breach but also life-threatening risk.

Thus, the security and privacy of body sensor networks are of great importance.

• Communication Networks

CPS cannot work alone without communication networks, which may be as im-

portant as CPS itself. There are still various security and privacy issue in differ-

ent communication networks in CPS, such as cognitive radio networks, Bluetooth,

near field communication, and WiFi, even though extensive research has been con-

ducted. Taking cognitive radio networks as an example, The Federal Communica-

tions Commission (FCC) recently has enforced database-driven cognitive radio net-

works, in which unlicensed users query a database to obtain availability information

by submitting location-based requests, instead of sensing the presence/absence of

licensed users directly. This may cause privacy information leakage for both unli-

censed and licensed users. For instance, for an unlicensed user, when it submits

a location based query, its location is inevitably leaked. Furthermore, an adversary

can infer the active pattern of the licensed users by submitting multiple queries at

different times. Therefore, it is in great demand to have an approach to preserve

the privacy of both licensed and unlicensed users in database-driven cognitive radio

networks simultaneously.

• Data Security and Privacy in CPS

A CPS usually generates large amounts of data, and the straightforward question

is how to securely and efficiently store all the data. Nowadays, technologies such

as fog computing and cloud computing are very popular. I believe that integrating

CPS data with fog/cloud computing is a promising and interesting direction. Another

direction is privacy of CPS data. One can apply or design various privacy schemes

on CPS data for different privacy purposes. For instance, it would be beneficial to

release CPS data to the public in some cases, as long as the privacy of the data
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is guaranteed. In recent years, the concept of differential privacy has gained much

popularity. I envision that applying the concept of differential privacy and privacy

preserving mechanisms to CPS data releases will be a promising research topic.
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