75 research outputs found

    Improving Few-shot and Zero-shot Entity Linking with Coarse-to-Fine Lexicon-based Retriever

    Full text link
    Few-shot and zero-shot entity linking focus on the tail and emerging entities, which are more challenging but closer to real-world scenarios. The mainstream method is the ''retrieve and rerank'' two-stage framework. In this paper, we propose a coarse-to-fine lexicon-based retriever to retrieve entity candidates in an effective manner, which operates in two layers. The first layer retrieves coarse-grained candidates by leveraging entity names, while the second layer narrows down the search to fine-grained candidates within the coarse-grained ones. In addition, this second layer utilizes entity descriptions to effectively disambiguate tail or new entities that share names with existing popular entities. Experimental results indicate that our approach can obtain superior performance without requiring extensive finetuning in the retrieval stage. Notably, our approach ranks the 1st in NLPCC 2023 Shared Task 6 on Chinese Few-shot and Zero-shot Entity Linking.Comment: Accepted to NLPCC202

    Learning representations from heterogeneous network for sentiment classification of product reviews

    Get PDF
    There have been increasing interests in natural language processing to explore effective methods in learning better representations of text for sentiment classification in product reviews. However, most existing methods do not consider subtle interplays among words appeared in review text, authors of reviews and products the reviews are associated with. In this paper, we make use of a heterogeneous network to model the shared polarity in product reviews and learn representations of users, products they commented on and words they used simultaneously. The basic idea is to first construct a heterogeneous network which links users, products, words appeared in product reviews, as well as the polarities of the words. Based on the constructed network, representations of nodes are learned using a network embedding method, which are subsequently incorporated into a convolutional neural network for sentiment analysis. Evaluations on the product reviews, including IMDB, Yelp 2013 and Yelp 2014 datasets, show that the proposed approach achieves the state-of-the-art performance

    Prediction of TF-binding site by inclusion of higher order position dependencies

    Get PDF
    Most proposed methods for TF-binding site (TFBS) predictions only use low order dependencies for predictions due to the lack of efficient methods to extract higher order dependencies. In this work, We first propose a novel method to extract higher order dependencies by applying CNN on histone modification features. We then propose a novel TFBS prediction method, referred to as CNN_TF, by incorporating low order and higher order dependencies. CNN_TF is first evaluated on 13 TFs in the mES cell. Results show that using higher order dependencies outperforms low order dependencies significantly on 11 TFs. This indicates that higher order dependencies are indeed more effective for TFBS predictions than low order dependencies. Further experiments show that using both low order dependencies and higher order dependencies improves performance significantly on 12 TFs, indicating the two dependency types are complementary. To evaluate the influence of cell-types on prediction performances, CNN_TF was applied to five TFs in five cell-types of humans. Even though low order dependencies and higher order dependencies show different contributions in different cell-types, they are always complementary in predictions. When comparing to several state-of-the-art methods, CNN_TF outperforms them by at least 5.3% in AUPR

    A Diffusion Model for Event Skeleton Generation

    Full text link
    Event skeleton generation, aiming to induce an event schema skeleton graph with abstracted event nodes and their temporal relations from a set of event instance graphs, is a critical step in the temporal complex event schema induction task. Existing methods effectively address this task from a graph generation perspective but suffer from noise-sensitive and error accumulation, e.g., the inability to correct errors while generating schema. We, therefore, propose a novel Diffusion Event Graph Model~(DEGM) to address these issues. Our DEGM is the first workable diffusion model for event skeleton generation, where the embedding and rounding techniques with a custom edge-based loss are introduced to transform a discrete event graph into learnable latent representation. Furthermore, we propose a denoising training process to maintain the model's robustness. Consequently, DEGM derives the final schema, where error correction is guaranteed by iteratively refining the latent representation during the schema generation process. Experimental results on three IED bombing datasets demonstrate that our DEGM achieves better results than other state-of-the-art baselines. Our code and data are available at https://github.com/zhufq00/EventSkeletonGeneration

    MTTFsite : cross-cell-type TF binding site prediction by using multi-task learning

    Get PDF
    Motivation The prediction of transcription factor binding sites (TFBSs) is crucial for gene expression analysis. Supervised learning approaches for TFBS predictions require large amounts of labeled data. However, many TFs of certain cell types either do not have sufficient labeled data or do not have any labeled data. Results In this paper, a multi-task learning framework (called MTTFsite) is proposed to address the lack of labeled data problem by leveraging on labeled data available in cross-cell types. The proposed MTTFsite contains a shared CNN to learn common features for all cell types and a private CNN for each cell type to learn private features. The common features are aimed to help predicting TFBSs for all cell types especially those cell types that lack labeled data. MTTFsite is evaluated on 241 cell type TF pairs and compared with a baseline method without using any multi-task learning model and a fully shared multi-task model that uses only a shared CNN and do not use private CNNs. For cell types with insufficient labeled data, results show that MTTFsite performs better than the baseline method and the fully shared model on more than 89% pairs. For cell types without any labeled data, MTTFsite outperforms the baseline method and the fully shared model by more than 80 and 93% pairs, respectively. A novel gene expression prediction method (called TFChrome) using both MTTFsite and histone modification features is also presented. Results show that TFBSs predicted by MTTFsite alone can achieve good performance. When MTTFsite is combined with histone modification features, a significant 5.7% performance improvement is obtained

    MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System

    Full text link
    Multi-modal sarcasm detection has attracted much recent attention. Nevertheless, the existing benchmark (MMSD) has some shortcomings that hinder the development of reliable multi-modal sarcasm detection system: (1) There are some spurious cues in MMSD, leading to the model bias learning; (2) The negative samples in MMSD are not always reasonable. To solve the aforementioned issues, we introduce MMSD2.0, a correction dataset that fixes the shortcomings of MMSD, by removing the spurious cues and re-annotating the unreasonable samples. Meanwhile, we present a novel framework called multi-view CLIP that is capable of leveraging multi-grained cues from multiple perspectives (i.e., text, image, and text-image interaction view) for multi-modal sarcasm detection. Extensive experiments show that MMSD2.0 is a valuable benchmark for building reliable multi-modal sarcasm detection systems and multi-view CLIP can significantly outperform the previous best baselines.Comment: Accepted by ACL2023 Finding

    Variation of polarization distribution of reflected beam caused by spin separation

    Full text link
    The variation of polarization distribution of reflected beam at specular interface and far field caused by spin separation has been studied. Due to the diffraction effect, we find a distinct difference of light polarization at the two regions. The variation of polarization distribution of reflected light provides a new method to measure the spin separation displacement caused by Spin Hall Effect of light.Comment: 7 pages, 5 figure

    Beta distribution guided aspect-aware graph for aspect category sentiment analysis with affective knowledge

    Get PDF
    In this paper, we investigate the Aspect Category Sentiment Analysis (ACSA) task from a novel perspective by exploring a Beta Distribution guided aspect-aware graph construction based on external knowledge. That is, we are no longer entangled about how to laboriously search the sentiment clues for coarsegrained aspects from the context, but how to preferably find the words highly sentimentrelated to the aspects in the context and determine their importance based on the public knowledge base, so as to naturally learn the aspect-related contextual sentiment dependencies with these words in ACSA. To be specific, we first regard each aspect as a pivot to derive aspect-aware words that are highly related to the aspect from external affective commonsense knowledge. Then, we employ Beta Distribution to educe the aspect-aware weight, which reflects the importance to the aspect, for each aspect-aware word. Afterward, the aspect-aware words are served as the substitutes of the coarse-grained aspect to construct graphs for leveraging the aspectrelated contextual sentiment dependencies in ACSA. Experiments on 6 benchmark datasets show that our approach significantly outperforms the state-of-the-art baseline methods
    corecore