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Abstract

Motivation: The prediction of transcription factor binding sites (TFBSs) is crucial for gene expression
analysis. Supervised learning approaches for TFBS predictions require large amounts of labeled data.
However, many TFs of certain cell-types either do not have sufficient labeled data or do not have any
labeled data.

Results: In this paper, a multi-task learning framework (called MTTFsite) is proposed to address the lack of
labeled data problem by leveraging on labeled data available in cross-cell-types. The proposed MTTFsite
contains a shared CNN to learn common features for all cell-types and a private CNN for each cell-type to
learn private features. The common features are aimed to help predicting TFBSs for all cell-types especially
those cell-types that lack labeled data. MTTFsite is evaluated on 241 cell-type TF pairs and compared to
a baseline method without using any multi-task learning model and a fully-shared multi-task model which
uses only a shared CNN and do not use private CNNSs. For cell-types with insufficient labeled data, results
show that MTTFsite performs better than the baseline method and the fully-shared model on more than
89% pairs. For cell-types without any labeled data, MTTFsite outperforms the baseline method and the
fully-shared model by more than 80% and 93% pairs, respectively. A novel gene expression prediction
method (called TFChrome) using both MTTFsite and histone modification features is also presented.
Results show that TFBSs predicted by MTTFsite alone can achieve good performance. When MTTFsite
is combined with histone modification features, a significant 5.7% performance improvement is obtained.
Availability: The resource and executable code are freely available at http:/hlt.hitsz.edu.cn/MTTFsite/
and http://www.hitsz-hlt.com:8080/MTTFsite/.

Contact: xuruifeng@hit.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction them computationally difficult to predict at genomic scale. TFBSs can be

Transcription factor (TF) binding sites (TFBSs) are important for represented by consensus sequences and position weight matrices (PWMs)

understanding transcriptional regulatory networks and fundamental (Stormo, 2000, 2013). The consensus sequence representation provides

cellular processes, such as growth controls, cell-cycle progressions and a convenient way for visual interpretation of TFBSs. But, nucleotide
variations at each position make the consensus sequence representation
unsuited to represent TFBSs (Lenhard er al., 2003; Holloway et al.,
2005). To overcome this problem, the PWM representation was proposed
to represent TFBSs (Stormo, 2000, 2013). PWMs are derived from

a set of aligned functionally related sequences and assume that the

developments, as well as differentiated cellular functions (Wasserman
and Sandelin, 2004; Dror et al., 2016; Zambelli et al., 2012). TFBSs are
short and often degenerate sequence motifs (Bulyk, 2003), which makes
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positions within each TFBS are independent of each other. However,
some studies have shown that position dependencies do exist in TFBSs,
such as crystal structure analyses (Luscombe et al., 2001), biochemical
studies (Man and Stormo, 2001; Bulyk et al., 2002; Berger et al., 2006),
and statistical analyses of large collections of TFBSs (Barash et al.,
2003; Tomovic and Oakeley, 2007; Zhou and Liu, 2004). In order to
integrate position dependencies in predictions, a new approach, called
dinucleotide weight matrix (DWM), was proposed recently (Siddharthan,
2010). DWM extends PWM by taking into account dependencies between
any two positions (Siddharthan, 2010). TFFM proposed by Mathelier and
Wasserman (Mathelier and Wasserman, 2013a) further captures position
dependencies for predictions. In TFFM, state transition probabilities in
a Hidden Markov Model (HMM) (Marinescu et al., 2005) were used
to model position dependencies. Although the above four representation
methods can represent TFBSs, they capture only sequence features.

Recent approaches attempted to use histones modification features to
improve the accuracy of TFBS predictions (Tsai ez al., 2015; Kumar and
Bucher, 2016; Won et al., 2010). Histone modification features refer to
the post-translational modification levels of various histones in chromatin
structures, which are closely related to the formation of TFBSs. Won at
al. (Won et al., 2010) proposed a HMM based method called Chromia by
combined use of histone modification features and sequence features. Tsai
et al. (Tsai et al., 2015) examined the contributions of sequence features,
histone modification features, and structure features in TFBS predictions
(Breiman, 2001). They conclude that all these three feature types were
significant in TFBS predictions.

Recent studies suggested that DNA shape features are another
important type of features for TFBS predictions (Mathelier et al., 2016a).
Mathelier (Mathelier et al., 2016a) proposed a method by using DNA
shape features predicted by DNAshape (Zhou ef al., 2013) and achieved
a very good prediction performance. Andrabi et al. (Andrabi et al., 2017)
proposed DynaSeq to predict molecular dynamics-derived ensembles of
a more exhaustive set of DNA shape features and than used them to
predict TFBSs. In addition to these DNA shape based methods, several
deep learning methods were proposed for TFBS predictions. DeepBind
(Alipanahi et al., 2015), DeepSEA (Zhou and Troyanskaya, 2015) and
DanQ (Quang and Xie, 2016) are three representative methods. DeepBind,
proposed by Alipanahi, applies Convolutional Neural Network (CNN) to
DNA sequence features. DeepSEA, proposed by Zhou and Troyanskaya,
combines CNN and a multi-task learning method to learn representations.
DanQ, an improved model of DeepSEA proposed by Quang and Xie,
combines the use of CNN and Recurrent neural network (RNN). All
these three deep learning based methods achieved very good predicting
performance and are considered the state-of-the art works.

When there exists large amount of labeled data, supervised
computational methods can achieve very good performance. However,
TFBSs for most TFs can only be identified by ChIP-Seq (Iyer et al., 2001;
Harbison et al., 2004; Kim et al., 2005) or ChIP-chip (Ren et al., 2000),
which are experimental techniques and are very labor-intensive and costly
to run. TFs of many cell-types do not have sufficient labeled data and
some do not have any labeled data. It remains quite challenging to train
predictors for TFs of cell-types that lack labeled data. Nevertheless, several
studies (Tsai et al., 2015; Kumar and Bucher, 2016; Won et al., 2010) have
shown that TFBSs of a TF in different cell-types have some common
histone modification features. A TF may also have common binding
motifs in different cell-types (Matys et al., 2006; Bryne et al., 2007).
So computational methods can leverage on the labeled data available in
other cell-types to predict TEBSs for cell-types lacking labeled data. In
this paper, we propose a multi-task learning framework, called MTTFsite,
for TFBS predictions. MTTFsite contains a shared CNN to learn common
features for all cell-types and a private CNN for each cell-type to learn
private features. When the target cell-type has labeled data, its private

features and the common features are combined to predict TFBSs. Thus,
for a target cell-type with labeled data, MTTFsite amounts to a data
augmentation method due to the fact that labeled data in the target cell-
type is augmented by labeled data available in other cell-types. When a
target cell-type does not have any labeled data, only the learned common
features are used to predict TFBSs. Thus, for the target cell-type without
labeled data, the term cross-cell-type refers to the fact that MTTFsite can
use labeled data available in other cell-types to learn common features by
the shared CNN.

Gene expression predictions provide a foundation for understanding
the transcriptional controls of cell identities, diseases, and cell-
based therapies. Many computational methods were proposed for gene
expression predictions. DeepChrome (Singh et al.,2016), TEPIC (Schmidt
et al., 2017) and Zhang’s method (Zhang and Li, 2017) are three state-of-
the-art methods. DeepChrome (Singh et al., 2016) is a unified end-to-end
architecture constructed by using Convolutional Neural Network (CNN).
The main advantage of DeepChrome is that it can capture both pairwise
interactions between neighboring bins and between different histone
modification features. However, DeepChrome does not use TFBSs of
any TF in predictions. TEPIC is a segmentation-based method which first
predicts TFBSs by applying PWMs to open-chromatin regions (Schmidt
etal.,2017) and then uses predicted TFBSs in gene expression predictions.
Although TEPIC can predict TFBSs by applying PWMs, only a small
portion of TFs have known PWMs so far. Also, predicted TFBSs by
PWMs usually have very high false positive rate due to the lack of position
dependencies in PWM. Zhang’s method combines 10 histone modification
features, TFBSs of 15 TFs and one DNase-I hypersensitivity profile for
gene expression predictions (Zhang and Li, 2017). As TFBSs of the 15
TFs are identified by experimental methods, this method is limited to only
a very small number of cell-types.

The objective of this work is to predict gene expressions for cell-
types without experimentally identified TFBSs for any TF. We propose
a novel gene expression prediction method, referred to as TFChrome, by
combined use of TFBSs predicted by MTTFsite and histone modification
features. As MTTFsite can predict TFBSs for TFs in most cell-types
by leveraging on labeled data available in cross-cell-types, TFChrome is
capable of predicting gene expression for most cell-types with or without
labeled data.

2 Methods

2.1 Datasets

TFs in five cell-types, including GM 12878, H1-hESC, HeLa-S3, HepG2
and K562, are used to evaluate our proposed method. As MTTFsite needs
to be evaluated by TFs with labeled data in at least two cell-types, where
one is used for testing and the others for training, a total of 72 TFs are
used to evaluate MTTFsite, where 17, 14, 18, 23 TFs have labeled data in
all the five cell-types, four cell-types, three cell-types and two cell-types,
respectively. The available TFBSs of these TFs in these five cell-types are
identified by TF ChIP-seq experiments and their peaks can be downloaded
from ENCODE (ENCODE Project Consortium, 2004) freely. The obtained
peaks are usually provided in one of two formats: narrow peak and broad
peak. Some TFs have well defined binding sites and can be modeled by
narrow peaks while binding sites of other TFs are less well localized and
would better be modeled by broader peaks. So the narrow peak format
is used if available. Otherwise, the broad peak format is used. Based on
works by Alipanahi et al. (Alipanahi et al., 2015) and Zeng et al. (Zeng
et al., 2016), the TFBS at each peak is defined as a 101 bp sequence by
taking the midpoint of the peak as the center. Contrast to TFBSs, the non-
TFBSs of a TF are defined as 101 bp DNA regions which cannot be bound
by the target TF. Many works (Won et al., 2010; Kumar and Bucher, 2016)
used a shuffle method to construct non-TFBSs. In the shuffle method, a
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Fig. 1. Architecture of multi-task learning for TFBS Prediction.

non-TFBS is constructed for each TFBS by shuffling the dinucleotides
in the TFBS to keep the dinucleotide composition unchanged. In this
study, however, as TFBSs need to be encoded by DNA sequences and
histone modification features which need to be extracted from actual DNA
sequences, we need to extract actual DNA fragments to construct non-
TFBSs. So, we construct anon-TFBS for each TFBS by randomly selecting
a 101 bp DNA fragment that has similar dinucleotide composition with the
TFBS and is nonoverlapping with all TFBSs. This way, we can construct
the same number of non-TFBSs as TFBSs for each TF. For each TF in each
cell-type, the labeled data are divided into 3 separate, yet equal size folds:
one fold for training, one fold for validation and one fold for test. The used
TFs and its number of TFBSs in each cell-types are listed in Supplementary
Table S1, which also can be accessed freely from our web-sever.

2.2 Feature Representation

Two types of features are used to represent TFBSs: sequence features
and histone modification features. Sequence features of a TFBS are
represented by the one-hot vectors of all its 101 nucleotides. Fora TFBS T
with the middle point at the position ¢ in a genome, the sequence features
can be represented by a feature matrix of dimension of 4 X 101 as follows

ST, = [O(Ni—50)," -+, O(N;), - ,O(Niy50)] )]

where O(NV;) denotes the one-hot vector of nucleotide N,. Seven
types of histone modification features are used: H3K4me2, H3K4me3,
H4K20mel, H3K9ac, H3K27ac, H3K27me3 and H3K36me3 as they are
available for all the five considered cell-types. The ChIP-seq profiles for
these histone modification features can be accessed freely from Kumar’s
work (Kumar and Bucher, 2016). Based on Won’s work (Won et al.,
2010), we use the following scheme to apply histone modification features
in MTTFsite: we first estimate the histone modification features for all
nonoverlapping 25-bp bins and then estimate the histone modification
features for each 100-bp bin by averaging the four 25-bp bins within it.
Finally, histone modification features of the twenty 100-bp bins around a
putative TFBS are concatenated to represent it. So the histone modification
features for a TFBS T can be represented as

Cr, = [H(N;—999, -, Ni_g98), - , H(Ni—g9, -

- yH(Nit901,- -, Nit1000)] (2)

: 7Ni)7

where H (-) denotes the histone modification features for a 100-bp bin.
Since we use seven histone modification features, the histone modification
features of a TFBS can be represented by a feature matrix with dimension
of 7 x 20.

2.3 Convolutional Neural Network (CNN)

In recent years, CNN has been gradually introduced into bioinformatics
to learn representations for protein sequences, DNA fragments and RNA
fragments. For example, Alipanahi et al. (Alipanahi ez al., 2015) developed
DeepBind to predict binding sites for DNA- and RNA-binding proteins
by using CNN to learn representations for DNA fragments and RNA
fragments. Wang et al. (Wang et al., 2016) proposed a CNN based
method to learn representations for proteins in protein secondary structure
predictions. As the actual TFBSs of a TF often contain specific binding
motifs, CNN is suitable to learn representations for TFBSs.

2.4 Multi-Task Learning for TFBS Prediction (MTTFsite)

Multi-task learning is an effective approach for improving the performance
of a single task by leveraging on other related tasks (Liu et al., 2017).
Multi-task learning attempts to divide the features for multiple tasks into
private and common features based on whether the features should be
shared. Thus, in multi-task learning, each task contains both private
features and common features. The private features of a task are the
properties belonging to only this task while the common features are the
characteristics shared by all the considered tasks. For TFBS predictions
of a TF, the prediction in each cell-type can be defined as a task. Thus,
TFBS predictions of a TF in multiple cell-types form a multi-task learning
paradigm.

In multi-task learning, there can be two types of learning methods: the
fully-shared model and the shared-private model (Liu et al., 2017). The
fully-shared model uses a single shared CNN to extract features for all cell-
types, whose hypothesis is that features of individual cell-types are shared
by all cell-types, as illustrated in Fig. 1(a). The feature space learned by
the fully-shared model contains common features and also private features
of each cell-type. Generally speaking, however, TFBSs of a TF in different
cell-types may have common features and each cell-type may also has its
own private features, not shared by other cell-types. Thus, private features
of each cell-type will affect the prediction of other cell-types. A more
serious issue is that, if some cell-types contain much more labeled data
than others, the feature space learned by the fully-shared model may be
dominated by private features of these cell-types, which will adversely
affect the prediction of other cell-types with less labeled data, which is
counter-productive to the goal of multi-task learning.

The shared-private model, on the other hand, contains a shared CNN
to learn common features for all cell-types as well a private CNN for each
cell-type to learn its private features. Features learned for every cell-type
are separated into two subspace: the common feature space and the private
feature space. In the prediction for each cell-type, its private features and
the common features are integrated as the input. The separation of private
features from common features makes sure that the private features of
each cell-type will not affect the predictions of other cell-types. Thus, the
shared-private model can leverage on labeled data available in other cell-
types to learn solid information from common feature space, especially
for cell-types with sparse or no labeled data. The shared-private model is
illustrated in Fig. 1(b). Assuming for a TF in a cell-type (task) m, we have
a dataset D, with N, instances, each instance is a pair of a putative
TFBS 2™ and its corresponding label y;™, that is:

Dy = {(@",y™)} ©)

As CNN is used to learn representations for all putative TFBSs, the private
features h™™ and the common features s™ of a putative TFBS z" in the
cell-type m learned by the shared-private model are formally formulated
as:

h™ = CNN(z!", 0m) “)

s = CNN(z{", 6s) )
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where 0,,, and 05 are the parameters of the private CNN for the cell-type
m and the shared CNN, respectively.

Our proposed MTTFsite follows the shared-private model. Thus,
MTTFsite has the ability to separate private features of each cell-type from
common features and can reduce the influence of private features of each
cell-type to other cell-types. In MTTFsite, the network topology of the
shared CNN and the private CNN for each cell-type contain two parallel
CNN models: one is used to learn representations from sequence features
and the other is used to learn representations from histone modification
features. Then the common features and the private features of each cell-
type are concatenated to represent instances and fed into a MLP for its
prediction.

3 Experiments and Results
3.1 Experimental settings

In MTTFsite, the CNN models in both the shared CNN and private CNNs
contain one convolution layer and each convolution layer consists of 200
convolution kernels of length 10. Each convolution layer is followed by a
max pooling layer. A dropout regularization layer with dropout probability
of 0.5 is used to avoid overfitting. The outputs of the shared CNN and the
private CNN for the target cell-type are concatenated and inputted into
the MLP of the target cell-type. The MLP consists of two fully connected
layers of 200 neurons and a softmax classifier for predictions. We use
Adagrad (Duchi et al., 2011) with a batch size of 64 instances and default
learning rate of 0.01. All these hyper-parameters are selected by carrying
out experiments on validation set. During training, we train the model
for 50 epochs. Once training is finished, we select the model with the
highest accuracy on the validation set as our final model and evaluate its
performance on the test set. All neural models are implemented in PyTorch.

To evaluate the performance of our proposed MTTFsite for TFBS
prediction, we compare MTTFsite with two representative prediction
methods: a baseline method and the fully-shared model. The baseline
method is similar to the DeepBind method proposed by Alipanahi et al.
(Alipanahi et al., 2015) except that the baseline method also uses histone
modification features as additional features. Both the baseline method
and the fully-shared model contain two parallel CNN models: one is
used to learn representations from sequence features and the other to
learn representations from histone modification features. The two learned
representations are concatenated and fed into a MLP for prediction. The
hyperparameters of the baseline method and the fully-shared model have
the same values as those used in MTTFsite.

3.2 Evaluation Metrics

AUC, Fl-measure and Matthews Correlation Coefficient (MCC) are
used as main metrics. AUC is the area under the Receiver Operating
Characteristic curve. A ROC curve plots the true positive rate (sensitivity)
versus the false negative rate (1-specificity) of different thresholds on the
importance score. Fl-measure is the harmonic average of the precision
and recall. Precision is the fraction of true TFBSs among the predicted
TFBSs, while recall is the fraction of true TFBSs that have been retrieved
over the total amount of TFBSs. MCC is a correlation coefficient between
the observed and predicted binary classifications. F1-measrue and MCC
can be calculated by following formulae:

Fl1—2x preci.si‘on X recall ©)
precision + recall

TP XTN—FP X FN

MCC =
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

()

1.00
095 | T
0.90
0.85
®]
2 080 - ;
075 | -
0.70 - .
. . Baseline
065} - . Fully-shared
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Cell-types

Fig. 2. Box plot depicting the AUC performance of data augmentation by the baseline
method, the fully-shared model and MTTFsite on TFs in the five cell-types.

where TP, T'N, FP and F'N denote the number of true positives, the
number of true negatives, the number of false positives and the number of
false negatives.

3.3 Results of data augmentation using the fully-shared
model

We first evaluate the performance of the fully-shared model on the TFs in
the five cell-types and compare it with the baseline method. For each TF,
the baseline method for each cell-type is trained by the training set of this
cell-type, and is validated and tested by the validation set and the test set
of this cell-type, respectively. By contrast, the fully-shared model of each
cell-type is trained by the combined training data of all the cell-types and
is validated and tested by the validation set and the test set of this cell-type,
respectively.

The comparison between the fully-shared model and the baseline
method in Supplementary Figure S1(A) and (B) shows that the fully-shared
model performs better than the baseline method for most cell-type TF pairs.
The box plot in Fig. 2 shows that the first quartile, the median and the third
quartile of the AUC for the fully-shared model are higher than that of the
baseline method for all the five cell-types. Details of AUC, Fl-measure
and MCC of the fully-shared model and the baseline method for each TF
of the five cell-types are listed in Supplementary Table S2. Results show
that the fully-shared model outperforms the baseline method for 49 TFs
out of the 56 TFs in GM 12878, 31 TFs out of the 42 TFs in H1-hESC, 33
TFs out of the 37 TFs in HeLa-S3, 42 TFs out of the 43 TFs in HepG2 and
60 TFs out of the 63 TFs in K562. These are the evidences that multi-task
learning can indeed improve the performance of TFBS predictions in most
cell-type TF pairs through labeled data available in cross-cell-types. Thus,
we can come to a conclusion that the TFBSs of a TF in multiple different
cell-types indeed have common features and the common features can be
learned by the combined use of the available labeled data from multiple
cell-types.

3.4 Results of data augmentation by MTTFsite

The feature space learned by the fully-shared model contains both common
features of all the cell-types and private features of each cell-type. The
prediction for each cell-type would be influenced by the private features of
other cell-types as were the case of the fully-shared model. Our proposed
MTTFsite separates the learning of private features of each cell-type from
that of the common features. For MTTFsite in data augmentation, each
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Table 1. Details of the AUC comparison between MTTFsite and the baseline
method for data augmentation.

Cell-type GM12878 HI-hESC HeLa-S3 HepG2 K562 Average®
Sample total 56 42 37 43 63 48.2
Improvement total 52 37 34 41 60 44.8
Improvement (%) 92.9 88.1 79.1 953 952 92.9
Maximum® (%) 31.7 12.7 22.1 37.8 179 245
Averageb (%) 3.6 35 32 3.8 2.9 34

2@ and ® denotes the maximum improvement and the average improvement,
respectively; © denotes the micro average over the total number of samples.

Table 2. Details of the AUC comparison between MTTFsite and the fully-shared
model for data augmentation.

Cell-type GM12878 HI-hESC HeLa-S3 HepG2 K562 Average®
Sample total 56 42 37 43 63 48.2
Improved total 47 39 37 39 59 442
Improvement % 83.9 929 100 90.7 93.7 91.7
Maximum® (%) 2.2 2.8 29 22 4.7 3.1
Average® (%) 0.6 1.2 0.7 0.6 0.8 0.8

@ and ® denotes the maximum improvement and the average improvement,
respectively; © denotes the micro average over the total number of samples.

private CNN is trained by the training set of the corresponding cell-type
while the shared CNN is trained by combined training data of all cell-types.
In order to evaluate the usefulness of feature separation, we compare the
performance of MTTFsite with both the baseline method and the fully-
shared model.

The comparison among the baseline method, the fully-shared model,
and our proposed MTTFsite is shown in Supplementary Figure S1. Figure
S1(B), (C) and (D) show that MTTFsite performs better than both the
baseline method and the fully-shared model for most cell-type TF pairs,
although the margin of improvement over the fully-shared model is smaller
compared to that of the baseline method. The box plot in Fig. 2 shows
that the first quartile, the median and the third quartile of the AUC for
the MTTFsite are higher than that of the fully-shared model and the
baseline method for all the five cell-types. Details of AUC, F1-measure and
MCC for the baseline method, the fully-shared model, and our proposed
MTTFsite for each TF of the five cell types are listed in Supplementary
Table S2. Table 1 summarizes the AUC performance gain of MTTFsite
compared to the baseline method. For the five cell-types, MTTFsite
performs better than the baseline method on at least 79.1% TFs of all
cell-types. The maximum improvement and the average improvement are
12.7% and 2.9% at least, respectively. On average, MTTFsite performs
better than the baseline method in more than 92.9% of TFs. The micro
average of the maximum improvement and the average improvement are
24.5% and 3.4%, respectively. The improvements are very significant as
shown by p-value = 4.71 x 10737 in Wilcoxon signed-ranks test.

Table 2 summarizes the AUC performance gain of MTTFsite compared
to the fully-shared model. For the five cell-types, MTTFsite performs
better than the fully-shared model in at least 83.9% of TFs for each
cell-type. The maximum improvement and the average improvement are
at least 2.2% and 0.6%, respectively. On average, MTTFsite performs
better than the fully-shared model significantly in more than 91.7% of TFs
with the maximum improvement and the average improvement of 3.1%
and 0.8%, respectively (p-value = 7.71 x 10~39 by Wilcoxon signed-
ranks test). Moreover, for some TFs, MTTFsite achieves very promising
improvements. For example, the improvements on BCL11A and RXRA in
H1-hESC are 2.0% and 2.3%, respectively; the improvements on RAD21
and SMC3 in HeLa-S3 are 2.5% and 2.0%, respectively; the improvements
on RAD21 and TR4 in K562 are 2.5% and 3.7%, respectively.

3.5 Comparison between MTTFsite and state-of-the-art
methods

Recent works with state-of-the-art performance include DNA shape based
mehtod, PWM, DWM as well as deep learning methods. This section will
first present comparison of our work with the use of DNA shape features
and then proceed to comparison with PWM, DWM and deep learning
methods.

DNA shapes represent the 3D structures of DNA. Recently, Mathelier
at al. (Mathelier et al., 2016a) proposed four models for TFBS predictions
in vivo by using DNA shape features including helix twist (HelT),
minor groove width (MGW), propeller twist (ProT), and the Roll. These
four DNA shape features and their corresponding second-order shape
features (Zhou et al., 2015), used to represent putative TFBSs, were
computed by DNAshape (Chiu et al., 2015; Zhou et al., 2013). Four
DNAshape based models we compared with include: (1) one-hot+shape,
which combines the one-hot encoding of nucleotides with DNA shape
features; (2) PSSM+shape, which combines PSSM scores with DNA shape
features; (3) TFFM_d+shape, which combines detailed TFFM scores
(Mathelier and Wasserman, 2013a) and DNA shape features, and (4)
TFFM_f+shape, which combines Ist-order TFFM scores (Mathelier and
Wasserman, 2013a) and DNA shape features. The implementation of the
four existing models is all available from the software download webpage
(http://github.com/amathelier/DNAshapedTFBS). They are implemented
in our comparison using their default setup and parameters. In addition
to DNAshape, DynaSeq proposed by Andrabi et al. (Andrabi et al.,
2017) can also be used to predict DNA shape features. DynaSeq predicts
molecular dynamics-derived ensembles of a more exhaustive set of DNA
shape features. In this study, we also compare MTTFsite with DynaSeq.
Supplementary Table S3 shows the AUC of MTTFsite, the four DNAshape
based models and DynaSeq on five TFs in the five cell-types with a total
of 24 cell-type TF pairs. Results show that DynaSeq achieves higher
AUC than the four DNAshape based models on 14 cell-types TF pairs.
It indicates that DNA shape features predicted by DynaSeq are more
useful than those predicted by DNAshape, which is consistent with the
conclusion drawn in the original publication (Andrabi et al., 2017). Results
also show that our proposed MTTFsite achieves higher AUC than the four
DNAshape based models and DynaSeq for 22 cell-type TF pairs. The
minimum improvement and the maximum improvement are 2% on GABP
in HepG2 and 30% on JunD in GM12878, respectively. The average
improvement is 11.6%, which is a very large improvement for TFBS
predictions. This first confirms that MTTFsite is more useful than the
four DNAshape based models and DynaSeq for TFBS prediction. One
possible reason that MTTFsite outperforms the use of DNA shape features
is that DNA shape features are predicted by computational methods from
DNA sequences. Thus, there may be redundancy with sequence features.
Furthermore, predicted DNA shape features may contain many noises.

Current state-of-the-art methods include PWM (Stormo, 2000,
2013), DWM (Siddharthan, 2010) and three deep learning methods:
DeepSEA (Zhou and Troyanskaya, 2015), DanQ (Quang and Xie,
2016) and DanQ-JASPAR (Quang and Xie, 2016). PWM and DWM
are two useful representation methods for TFBSs and achieved good
performance (Mathelier and Wasserman, 2013b). DeepSEA applies
CNN and DanQ combines CNN with Recurrent neural network (RNN)
to learn features for TFBSs. DanQ-JASPAR, an alternative model of
DanQ, was developed by initializing half of the kernels in CNN with
motifs from the JASPAR database (Mathelier et al., 2016b). In this
evaluation, we implemented PWM and DWM based on Mathelier’s work
(Mathelier and Wasserman, 2013b). We downloaded DeepSEA from its
software’s webpage (http://DeepSEA.princeton.edu/) and DanQ as well
as DanQ-JASPAR from their software’s webpage (http://github.com/uci-
cbcl/DanQ). Performance data for DeepSEA, DanQ and DanQ-JASPAR
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Table 3. The AUC of five state-of-the-art methods and MTTFsite on five TFs
in five cell-types.

Table 4. Details of the AUC comparison between MTTFsite and the baseline
method for cross-cell-type prediction.

TF Cell-type PWM DWM DanQ DanQ-J DeepSEA MTTFsite Cell-type GM12878 HI-hESC HeLa-S3 HepG2 K562 Average®
CTCF GMI12878 0.586 0.578 0.765 0.731 0.677 0.859 Sample total 56 42 37 43 63 48.2
HI-hESC 0.566 0.575 0.794 0.758 0.689 0.816 Improvement total 46 31 29 35 54 39
HeLa-S3  0.505 0.509 0.720 0.698 0.670 0.834 Improvement (%) 82.1 73.8 78.4 81.4 857 80.9
HepG2 0.523 0.527 0.796 0.757 0.697 0.871 Maximum® (%) 40.9 31.0 25.7 42.0 347 36.9
K562 0.923 0.938 0.728 0.693 0.635 0.839 Average® (%) 5.1 8.0 4.1 5.1 4.0 5.1

GABP GM12878 0.844 0.844 0.797 0.845 0.791 0.934
HI-hESC 0.721 0.740 0.789 0.791 0.763 0.729
HeLa-S3  0.877 0.875 0.658 0.681 0.630 0.946
HepG2 0.786 0.791 0.794  0.838 0.795 0.864
K562 0.756 0.754 0.775  0.793 0.763 0.913

JunD  GM12878 0.906 0.919 0.621  0.606 0.589 0.957
HI1-hESC 0.557 0.566 0.693 0.686 0.643 0.876
HeLa-S3  0.863 0.860 0.777 0.788 0.711 0.942
HepG2 0.925 0.878 0.813 0.826 0.738 0.829
K562 0.684 0.687 0.655 0.653 0.595 0.912

REST GM12878 0.906 0.919 0.621 0.606 0.589 0.957
HeLa-S3  0.899 0.922 0.602 0.597 0.559 0.940
HepG2 0.886 0.902 0.630 0.603 0.602 0.911
K562 0.867 0.890 0.646 0.645 0.623 0.905

USF2 GMI12878 0.891 0.891 0.673 0.698 0.615 0.938
HI1-hESC 0.841 0.851 0.729 0.752 0.662 0.887
HeLa-S3 0908 0912 0.641 0.654 0.561 0.938
HepG2 0.952 0953 0.697 0.751 0.591 0.904
K562 0.921 0.926 0.660 0.715 0.580 0.945
DanQ-J denotes DanQ-JASPAR. The bold and underscore numbers denote the best
performer and second best performer, respectively.

is the result of using their default setup and parameters. We compare
MTTFsite with these five state-of-the-art methods by five TFs in the five
cell-types with a total of 24 cell-type TF pairs. As MTTFsite is trained
by datasets in five cell-types and 7 histone marks, we trained DeepSEA,
DanQ and DanQ-JASPAR for each TF with the TF binding profiles in the
five cell-types and the 7 histone-mark profiles to make a fair comparison.
Table 3 shows the AUC of our proposed MTTFsite and the five state-of-
the-art methods on the 24 cell-type TF pairs. Results show that DWM
achieves higher or equal AUC than PWM for 20 cell-type TF pairs, which
is consistent with the conclusion of the original publication (Siddharthan,
2010). DanQ achieves higher AUC than DanQ-JASPAR on 12 cell-type
TF pairs and achieves lower AUC than DanQ-JASPAR on the remaining
pairs. This indicates that DanQ and DanQ-JASPAR have comparable
performances. DanQ performs better than DeepSEA for most cell-type
TF pairs, which is consistent with the result reported in the original
publication (Quang and Xie, 2016). Most noticeably, MTTFsite performs
better than the five state-of-the-art methods in 21 out of the 24 cell-type
TF pairs. On the 21 pairs, the minimum, the maximum and the average
improvement are 0.9%, 22.5% and 6.0%, respectively. It should be noted
that the performance of DeepSEA, DanQ and DanQ-JASPAR are much
better in their reported original publications. However, their performance
in this study is much worse. The main reason is that the original models
are trained by 690 TF binding profiles for 160 different TFs, 125 DHS
profiles as well as 104 histone-mark profiles while the models in this study
is trained by TF binding profiles of only five cell-types and 7 histone-
mark profiles. It indicates that the performance of DeepSEA, DanQ and
DanQ-JASPAR closely relies on large number of data sets.

3.6 Results of cross-cell-type prediction by MTTFsite

Due to the high cost of TF ChIP-seq experiments, many cell-types only
have labeled data for very limited portion of TFs. Most TFs are not labeled.

@ and ® denotes the maximum improvement and the average improvement,
respectively; © denotes the micro average over the total number of samples.

This motivates us to use computational methods to predict TFBSs for TFs
in those cell-types that have no labeled data for them. As our proposed
MTTFsite can use a shared CNN to learn common features by leveraging
on the available labeled data from available cell-types, it aims to predict
TFBSs for TFs in the cell-types without labeled data for them. This is what
we refer to as cross-cell-type predictions. To evaluate the performance of
MTTFsite for cross-cell-type TFBS prediction, we assume that only the
test set of the target cell-type is available while the training set as well as
the validation set are unavailable. In cross-cell-type prediction, MTTFsite
trains both the shared CNN of all cell-type and the private CNN of the
target cell-type by combined training data of cross-cell-types. MTTFsite
is validated by combined validation set of cross-cell-types and then tested
on the test set of the target cell-type. We compare the performance of
cross-cell-type prediction by MTTFsite with the fully-shared model and
the baseline method. The fully-shared model is trained and validated by
cross-cell-types like MTTFsite and the baseline method is trained and
validated by the target cell-type.

The comparison among the baseline method, the fully-share model
and our proposed MTTFsite is shown in Supplementary Figure S2. Figure
S2(A) and (B) show that the fully-shared model performs better than the
baseline method for most cell-type TF pairs. The box plot in Fig. 3 shows
that the first quartile, the median and the third quartile of the AUC for the
fully-shared model are higher than that of the baseline method for all the
five cell-types. It indicates that the use of information of cross-cell-types
is useful and can achieve better performance than the baseline method
which is trained by the target cell-type. Figure S2(B), (C) and (D) show
that MTTFsite performs better than both the baseline method and the fully-
shared model for most cell-type TF pairs. The box plot in Fig. 3 shows that
the first quartile, the median and the third quartile of the AUC for MTTFsite
are higher than that of both the baseline method and the full-shared model
for all the five cell-types. Details of AUC, F1-measure and MCC for these
three methods on TFs in the five cell-types are listed as Supplementary
Table S4. Table 4 summarizes the AUC performance gain of MTTFsite
compared to the baseline method for cross-cell-type TFBS predictions.
For the five cell-types, MTTFsite outperforms the baseline method on at
least 73.8% TFs of each cell-type. The maximum improvement and the
average improvement are at least 25.7% and at least 5.1%, respectively. On
average, MTTFsite outperforms the baseline method in more than 80.9%
of TFs. The micro average of the maximum improvement and the average
improvement are 36.9% and 5.1%, respectively. The improvement is very
significant according to p-value = 1.42 x 10~ 23 by Wilcoxon signed-ranks
test.

Table 5 summarizes the AUC performance gain of MTTFsite compared
to the fully-shared model. For the five cell-types, MTTFsite performs better
than the fully-shared model in at least 88.1% of TFs for each cell-type.
The maximum improvement and the average improvement are at least 3.5%
and at least 1.2%, respectively. On average, MTTFsite performs better than
the fully-shared model significantly in more than 94.2% of TFs with the
maximum improvement and the average improvement of 4.0% and 1.3%,
respectively (p-value = 4.55 x 10713 by Wilcoxon signed-ranks test).
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Table 5. Details of the AUC comparison between MTTFsite and the fully-shared
model for cross-cell-type prediction.

Cell-type GM12878 HI-hESC HeLa-S3 HepG2 K562 Average®
Sample total 56 42 37 43 63 48.2
Improvement total 54 37 36 41 59 454
Improvement (%) 96.4 88.1 97.3 953 937 94.2
Maximum® (%) 4.2 3.6 35 4.0 44 4.0
Average® (%) 1.2 1.5 1.2 1.4 1.3 1.3

2@ and ® denotes the maximum improvement and the average improvement,
respectively; © denotes the micro average over the total number of samples.
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Fig. 3. Box plot depicting the AUC performance of cross-cell-type prediction by the
baseline method, the fully-shared model and MTTFsite on TFs in the five cell-types.

The improvements for many TFs are quite promosing. For example, the
improvements for RAD21 and MAFK in H1-hESC and CTCF, RAD21
and SMC3 in K562 are more than 3.0%; the improvements for CTCF and
EZH2 in GM12878, CTCF in HeLa-S3, NRSF in HepG2 are more than
4.0%. It is a strong indication that MTTFsite has a better prediction power
than that of the fully-shared model.

By comparing MTTFsite with the full-shared model, we find that the
private CNNs of the cell-types without labeled data in MTTFsite function
similarly to the shared CNN in the fully-shared model because they both
are trained by the combined training data from cross-cell-types. The only
difference is that MTTFsite contains both features learned by private CNN's
and by the shared CNN whereas the fully-shared model only uses features
learned by the shared CNN. In the fully-shared model, if some cell-types
contain too much training data, the learned features are dominated by
private features of these cell-types such that many common features are
lost. As MTTFsite can separate private features from common features,
the lost common features in the private CNNs can be complemented by
the common features learned by the shared CNN. Therefore, the features
learned by MTTFsite for each cell-type contain more common features
than that learned by the fully-shared model.

In order to further demonstrate the performance of MTTFsite for
cross-cell-type prediction, we evaluate MTTFsite on TFs in K562 cells
from PIQ study (Sherwood et al., 2014), which are available from
online resource located at (http://piq.csail.mit.edu/data/141105-3618f89-
hg19k562.calls/141105-3618£89-hg19k562.calls.tar.gz). Although there
are a total of 1316 TFs with genome-wide TFBSs available in K562 from
PIQ study, only 28 TFs have training set in at least one cell-type of the
five cell-types in this study except K562. So MTTFsite is only tested on
the 28 TFs with available training data. In Andrabi’s work (Andrabi et al.,
2017), TFBSs are selected from the "calls" data and equal number of non-
TFBSs are selected with the cut-off score of 0.25, where the maximum

number of TFBSs and non-TFBSs was fixed at 2000 by random sampling.
However, in order to evaluate MTTFsite on genome scale, we collected
all the TFBSs from the "calls" data and equal number of non-TFBSs to
make up test set. Thus, for each TF, MTTFsite is trained by the combined
training data available in the four cell-types in this study and tested on the
test set from PIQ study. The performance is listed in Supplementary Table
S5. Results show that MTTFsite achieves good performance on most TFs
and the AUC performance on seven TFs is more than 0.8. As training data
comes from ChIP-Seq while testing data comes from DNAse-Seq, results
indicate that MTTFsite can be applied for cross-platform prediction.
ENCODE-DREAM in vivo Transcription Factor Binding Challenge
contains a Across-Cell Type Prediction Challenge, in which each TF has
cell-types for training and held-out cell-types for testing. We downloaded
the 13 cell-type TF pairs in the Final Submission Round. For each TF,
MTTFsite is trained by at least one cell-type and tested by held-out cell-
types, which are newly generated and have never been previously released
by ENCODE. As the challenge do not provide histone modification
features, MTTFsite is trained only from DNA sequences and chromatin
accessibility measured by DNAse-Seq. The advantage of MTTFsite is
that it can learn common features in histone modification features for
TFBSs shared by multiple cell-types. Even though, MTTFsite trained from
DNA sequence and chromatin accessibility cannot fully demonstrate the
advantages of our method , MTTFsite still achieves very good performance
on the 13 cell-type TF pairs. The performance is listed in Supplementary
Table S6. Table S6 shows that MTTFsite achieves good performance for
all the 13 cell-type TF pairs. Specifically, AUC of all the 13 pairs is more
than 0.9 and AUC of 7 pairs is even more than 0.95. Results indicate
that MTTFsite can achieve good performance for cross-cell-type TFBS
prediction even when histone modification features are not available.

3.7 Results on cell-type shared TFBS and cell-type specific
TFBS

One advantage of MTTFsite is that it can leverage on cell-type shared
TFBSs available in other cell-types to train the shared CNN. To validate
this, we evaluate the performance of MTTFsite on cell-type shared TFBSs
and cell-type specific TFBSs, separately. In this study, cell-type shared
TFBSs of a cell-type are defined as the TFBSs which have at least a TFBS of
other cell-types in its range of 100 bp. The remaining TFBSs are referred to
as cell-type specific TFBSs. According this criterion, TFBSs of each cell-
type are divided into cell-type shared TFBSs and cell-type specific TFBSs.
Details of the number of cell-type shared TFBSs and cell-type specific
TFBSs for TFs in the five cell-types is listed in Supplementary Table S7.
For each target cell-type, MTTFsite is trained by combined labeled data
available in cross-cell-types and tested on cell-type shared TFBSs and cell-
type specific TFBSs of the target cell-type, separately. Sensitivity is used
to evaluate the performance of MTTFsite. The sensitivity of MTTFsite
for TFs in the five cell-types is listed in Fig. 4. Fig. 4(A) shows that
MTTFsite achieves higher sensitivity on cell-type shared TFBSs than cell-
type specific TFBSs for all cell-type TF pairs except one. Fig.4(B) shows
that the first quartile, the median and the third quartile of the sensitivity
for cell-type shared TFBSs are higher than that for cell-type specific
TFBSs for TFs in all the five cell-types. Details of the sensitivity for
cell-type shared and specific TFBSs for TFs in the five cell-types are listed
as Supplementary Table S8. Results indicate that MTTFsite indeed can
effectively leverage on cell-type shared TFBSs available in cross-cell-types
to learn common features of all cell-types.

As MTTFsite achieves higher sensitivity on shared TFBSs than specific
TFBSs in almost all the five cell-types for each TF, the shared TFBSs
dominate the performance of MTTFsite. If other cell-types have more
shared TFBSs available by target cell-types, MTTFsite can achieve higher
prediction performance. Therefore, high-quality predictions of MTTFsite
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Fig. 4. (A) Scatter plot depicting the distribution of the AUC performance for cell-type shared TFBSs and cell-type specific TFBSs. (B) Box plot depicting the AUC performance for

cell-type shared TFBSs and cell-type specific TFBSs on TFs in the five cell-types.

for each TF rely on available TFBSs shared by target cell-types and other
cell-types.

It should also be noted that Fig. 4(B) shows that specific TFBSs in H1-
hESC achieve the lowest sensitivity among the five cell-types. Itis possible
that MTTFsite achieves low sensitivity scores for specific TFBSs in H1-
hESC because specific TFBSs in HI-hESC have different characteristics
compared to other cell-types for some TFs. Based on this hypothesis, we
conducted an additional experiment to calculate the cosine similarities
among the five cell-types for both specific TFBSs and shared TFBSs of
each TF. For each TF, we first represent specific TFBSs and shared TFBSs
by histone modification features and calculate their center in each cell-
type by calculating the median value of each histone modification feature.
Then, based on these centers, we calculate the cosine similarity between
any two cell-types. Finally, for each cell-type, its cosine similarities to
other cell-types are averaged. The average cosine similarities of the five
cell-types for both specific TFBSs and shared TFBSs of each TF are shown
in Fig. 5. The figure shows that the cosine similarities of shared TFBSs
are higher than that of specific TFBSs in the five cell-types. This explains
why MTTFsite achieves higher performance for shared TFBSs than that
for specific TFBSs. Fig. 5 also shows that specific TFBSs in HI-hESC
have the lowest cosine similarity to other cell-types among the five cell-
types. This is indeed likely the reason that specific TFBSs in HI-hESC
achieve the lowest sensitivity. Fig. 5 further shows that K562 has lower
cosine similarity than the other three cell-types. This explains why specific
TFBSs in K562 achieve lower sensitivity than the other three cell-types.
The other three cell-types have small cosine similarity differences, so their
specific TFBSs have small sensitivity differences.

nextPBM has been proposed to characterize the impact of cofactors
and phosphorylation on TF binding and determine cell-type specific
TFBSs (Mohaghegh et al., 2019). The authors analyzed DNA binding
of PU.1/SPI1 and IRF8 from human monocytes and found that cofactors
and phosphorylation have no effect on autonomous PU.1/SPI1 binding
and only have effect on its cooperative binding with monocyte-specific
cofactors. Thus, nextPBMs can only identify cell-type specific cooperative
TFBSs of PU.1/SPI1 with IRFS. As our proposed MTTFsite needs cell-
type specific TFBSs to learn cell-type specific features by private CNNs
and PU.1/SPI1 does not have cell-type specific TFBSs, current datasets
used by nextPBM are inappropriate to improve MTTFsite. Nevertheless,
nextPBM is capable of identifying cell-type specific TFBSs by comparing
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Fig. 5. Cosine similarities of cell-type specific TFBSs in different cell-types.

TFBSs from nuclear extracts to that from in vitro transcription/translation
protein. Therefore, in the future, we can apply nextPBM to identify cell-
type specific TFBSs for TFs. This should help to improve MTTFsite for
cell-type specific TFBS prediction by learning cell-type specific features
through private CNNs using the identified cell-specific TFBSs identified
by nextPBM.

3.8 Application in gene expression prediction

TFs can bind to DNA through TFBSs to regulate gene expression.
Therefore, we hypothesize that TFBSs are significant for gene expression
regulations and can play an important role in gene expression prediction.

In this work, we propose a new gene expression prediction method,
referred to as TFChrome, by combining the use of TFBSs predicted by
MTTFsite and histone modification features. We evaluate TFChrome by 20
cell-types from the Roadmap Epigenomics Consortium (RMEC) (Kundaje
etal.,2015). These 20 cell-types have seven common histone modification
features (Boyle et al., 2008; Crawford et al., 2006). Since these 20 cell-
types do not have available labeled data for any TF, MTTFsite combines
the available labeled data from GM 12878, H1-hESC, HeLa-S3, HepG2
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Table 6. The AUC of the gene expression predictions on the 20 cell-types from
RMEC.

Cells TFBS Histone Combine
Breast_vHMEC 0.779  0.859 0.864
Fetal_Brain 0.764  0.848 0.855
Fetal_Muscle_Leg 0.773  0.854 0.858
Fetal_Muscle_Trunk 0.759  0.802 0.849
Gastric 0.752  0.813 0.819

H1_BMP4_Derived_Mesendoderm_Cultured_Cells 0.746  0.787 0.827
H1_BMP4_Derived_Trophoblast_Cultured_Cells 0.751  0.831 0.840

H1_Cell_Line 0.754  0.837 0.844
H1_Derived_Mesenchymal_Stem_Cells 0.782  0.833 0.839
H1_Derived_Neuronal_Progenitor_Cultured_Cells  0.752  0.833 0.839
IMR90_Cell_Line 0.789  0.852 0.860
iPS_DF_19.11_Cell_Line 0.744  0.808 0.813
iPS_DF_6.9_Cell_Line 0.746  0.823 0.826
Mobilized_CD34_Primary_Cells 0.797 0.872 0.878
Pancreas 0.754 0.824 0.832
Penis_Foreskin_Fibroblast_Primary_Cells 0.815 0.885 0.891
Penis_Foreskin_Keratinocyte_Primary_Cells 0.794 0.872 0.880
Penis_Foreskin_Melanocyte_Primary_Cells 0.801 0.875 0.881
Psoas_Muscle 0.767 0.801 0.858
Small_Intestine 0.767  0.835 0.840

The bold and underscore numbers denote the best performer and second best
performer, respectively.

and K562 as training data to predict TFBSs for TFs in these 20 cell-
types. More specifically, we predict the TFBSs for 72 TFs in the 20
cell-types, which are listed in Supplementary Table S1. As the 20 cell-
types from RMEC and the five cell-types with labeled data contain seven
common histone modification features including H3K27ac, H3K37me3,
H3K36me3, H3K9ac, H3K9me3, H3K4mel and H3K4me3, these seven
histone modification features are used in both the TFBS prediction and the
gene expression prediction. Details of the definition of gene expression
prediction and the used gene encoding method are given in Supplementary
Methods.

To consider the relative importance of predicted TFBSs and histone
modification features, we use two baseline methods for comparison: (1)
using only predicted TFBSs and (2) using only histone modification
features. our proposed TFChrome combines both the predicted TFBSs and
histone modification features. Table 6 gives the performance evaluation
of the three methods. Note that the maximum, the minimum and the
average AUC of prediction using only predicted TFBSs are 0.815, 0.744
and 0.769, far better than random guessing. This is a strong indication that
our hypothesis is correct that TFBSs indeed play an important role in gene
expression predictions.

Table 6 also shows that TFchrome outperforms the method using
only histone modification features. The Wilcoxon signed-ranks test
with p-value of at least 3.36e-5 also indicates that the improvement is
very significant. For some cell-types, the performance improvement by
TFChrome is quite prominent. For example, for Fetal_Muscle_Trunk,
H1_BMP4_Derived_Trophoblast_Cultured_Cells and Psoas_Muscle, the
improve in AUC are 3.3%, 4.0% and 5.7%, respectively. These are
evidences that TFBSs predicted by our proposed MTTFsite and histone
modification features are complementary for gene expression predictions.

Several computational methods were proposed for gene expression
predictions. TEPIC (Schmidt er al., 2017), Zhang’s method (Zhang
and Li, 2017) and DeepChrome (Singh et al., 2016) are three methods
with state-of-the-art performance. As the used data sets and the
definition for the problem of gene expression prediction in TFChrome
are different from TEPIC and Zhang’s method, we only compare
TFChrome with DeepChrome. DeepChrome, proposed by Singh at al.
(Singh et al., 2016), uses CNN and histone modification features, which

outperforms most previous methods. As TFChrome has 15 cell-types
common with DeepChrome, we compare them on those 15 cell-types.
Supplementary Table S9 shows the performance comparison of TFChrome
and DeepChrome. Note that the AUC of DeepChrome on the 15 common
cell-types are given directly from Singh’s work. Table S9 shows that our
proposed TFChrome performs far better than DeepChrome on 14 out of
the 15 common cell-types. The maximum, the minimum and the average
improvement in AUC is 12%, 1.7% and 6.2%, respectively, which are
quite large. As both methods use the histone modification features, the
main difference is that TFChrome also use the additional feature from the
predicted TFBSs. Thus, it is fair to say that the improvement is contributed
by the predicted TFBSs using MTTFsite.

4 Conclusion

In this paper, we present a novel data augmentation method using multi-
task learning framework, MTTFsite, for TFBS predictions. MTTFsite
contains a shared CNN to learn common features of all cell-types and
a private CNN for each cell-type to learn private features. The aim of
the algorithm is to make use of common features cross different cell-
types to help predicting TFBSs for TFs in cell-types that have no labeled
data. Performance evaluation shows MTTFsite can effectively leverage
on labeled data available in cross-cell-types to learn common features of
all cell-types. As MTTFsite can separate private features from common
features, it outperforms the fully-shared model significantly. For cross-
cell-type prediction, MTTFsite also outperforms the compared models.
This is a clear indication that common features learned by MTTFsite
from labeled data available in cross-cell-types are indeed useful for cross-
cell-type predictions. To further prove the usefulness of MTTFsite, we
propose to make use of the predicted TFBSs for gene expression prediction.
The new gene expression prediction method TFChrome makes combined
use of the TFBSs predicted by MTTFsite and histone modification
features. The evaluation on 20 cell-types shows that TFBSs predicted
by MTTFsite significantly improves the performance of gene expression
predictions compared to the state-of-the art methods. Gene expressions of
organisms are closely related to identification of diseases. For example,
low expression of BRCA1 plays an important role in breast and ovarian
cancers. Therefore, accurate gene expressions predicted by our proposed
TFChrome can provide valuable reference and assistance for the diagnosis
and treatment of dozens of diseases.

One direction of future works is to investigate the relative importance of
labeled data from different cell-types in cross-cell-type TFBS prediction.
The second direction is to investigate the prediction of TFs of cell-types
without any labeled data by using labeled data of other TFs from the same
cell-type, which is also referred to as cross-TF TFBS predictions.
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