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Abstract—Most proposed methods for TF-binding site (TFBS)
predictions only use low order dependencies for predictions due to
the lack of efficient methods to extract higher order dependencies.
In this work, We first propose a novel method to extract higher
order dependencies by applying CNN on histone modification
features. We then propose a novel TFBS prediction method,
referred to as CNN TF, by incorporating low order and higher
order dependencies. CNN TF is first evaluated on 13 TFs in
the mES cell. Results show that using higher order dependencies
outperforms low order dependencies significantly on 11 TFs. This
indicates that higher order dependencies are indeed more effec-
tive for TFBS predictions than low order dependencies. Further
experiments show that using both low order dependencies and
higher order dependencies improves performance significantly on
12 TFs, indicating the two dependency types are complementary.
To evaluate the influence of cell-types on prediction performances,
CNN TF was applied to five TFs in five cell-types of humans.
Even though low order dependencies and higher order depen-
dencies show different contributions in different cell-types, they
are always complementary in predictions. When comparing to
several state-of-the-art methods, CNN TF outperforms them by
at least 5.3% in AUPR.

Index Terms—Protein-DNA interaction, TF-binding site, CNN,
Transcription factor, low order dependency, higher order depen-
dency.

I. INTRODUCTION

GEne expression is mainly regulated by interactions be-
tween DNA and transcription factors (TFs) [1]. So

predictions of TF-binding sites (TFBSs) are important for
understanding transcriptional regulatory networks and crucial
in understanding fundamental cellular processes [2]. Two
experimental techniques have been developed for TFBS iden-
tifications: chromatin immunoprecipitation followed by high
throughput sequencing (ChIP-Seq) [3] and chromatin im-
munoprecipitation followed by array hybridization (ChIP-chip)
[3]. These two technologies have been successfully used to
map TF binding locations for many organisms. However, the
lacking of antibodies for many TFs and the high expense
have made them be useful only for a limited number of TFs.
Therefore, computational methods are urgently required for
TFBS identifications.
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TFBSs are generally short and often degenerate sequence
motifs [4] such that they are computationally difficult to be
predicted at a genomic scale. The TFBSs of a TF can be
represented by a consensus sequence and a position weight
matrix (PWM) [5]. The consensus sequence representation is
easy to visually interpret TFBSs. However, variations of the
nucleotide composition at each position in TFBSs make the
consensus sequence representation an unsuitable approach for
TFBS representations [6, 7]. So many classical computational
methods used PWMs to represent TFBSs [5]. A PWM is
often derived from a set of aligned and functionally related
sequences. The basic assumption for PWM is that the positions
within a TFBS are independent between each other. However,
position dependencies within TFBSs are observed in many
studies including crystal structure analyses [8] and a biochem-
ical study [9]. Tomovic and Oakeley analyzed the number of
TFBSs with dependent positions by using three statistical tests
and attempted to extracted evidences of position dependencies
from TF-DNA crystal structures [10]. Their conclusion is that
some TFs indeed show evidences of position dependencies.
Based on Tomovic and Oakeley’s finding, Zare-Mirakabad et
al. proposed a scoring function by including dependencies
between all positions in TFBSs [11]. The joint information
content and the mutual information are used to measure
dependencies in the scoring function. Evaluations show that
including position dependencies indeed obtains performance
gains. Furthermore, Siddharthan proposed dinucleotide weight
matrix (DWM) to extend PWM by including dependencies
between neighbor positions within a TFBS [12]. In addition
to DWM, TFFM proposed by Mathelier and Wasserman can
also capture dependencies between neighbor positions for
predictions [13], in which the state transition probabilities in
a hidden markov (HMM) model [14] are used to model the
dependencies between neighbor positions.

Although DWM [12] and TFFM [13] can capture pairwise
dependencies between neighbor positions, they cannot capture
multiple dependencies among positions. As we know, histone
modification features are post-translational modification levels
of histones on chromatin structures. Histone modification fea-
tures are DNA fragment features and span multiple positions,
so they can capture multiple dependencies among positions.
Several studies [15–17] have shown that TFBSs are associated
with different histone modification features from non-TFBSs,
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so they proposed novel prediction methods by incorporating
histone modification features. Talebzadeh and Zare-Mirakabad
[18] developed a method by combining two sets of histone
modification features. Won at al. [19] proposed a HMM based
method called Chromia, in which both histone modification
features and sequence features are used for learning feature
representations. Recently, Tsai et al. [15] examined respective
contributions of sequence features, histone modification fea-
tures, and structure features for TFBS predictions by using
a random forest model [20] and concluded that all the three
feature types are useful. Recent studies also suggested that
DNA shape features are another important type of features
for TFBS predictions [21]. DNA shapes represent the 3D
structure of DNA fragments and span multiple positions,
so shape features can extract multiple dependencies among
positions. Methelier [21] proposed a method by using DNA
shape features and demonstrated that DNA shape features
indeed play important roles in TFBS predictions.

In addition to the DNA shape based method, several deep
learning methods have been proposed for TFBS predictions.
DeepBind [22], DeepSEA [23] and DanQ [24] are three
representative methods. DeepBind [22] was proposed by
Alipanahi et al. (2015) by applying Convolutional Neural
Network (CNN) to DNA sequence features. DeepSEA [23]
was proposed by Zhou and Troyanskaya (2015) by combining
CNN and a multi-task learning method to learn representations
for putative TFBSs. DanQ [24] is an improved model of
DeepSEA, which was proposed by Quang and Xie (2016) by
applying combined use of CNN and Recurrent neural network
(RNN) to sequence features to learning representations for
TFBSs. The multi-task learning method in both DeepSEA and
DanQ contains 919 prediction tasks including 690 TFBS pre-
diction tasks, 104 histone modification peak prediction tasks,
125 DNase Ihypersensitive sites (DHSs) prediction tasks.

Position dependencies have been proposed by works of
Tomovic and Oakeley [10] and Zare-Mirakabad et al. [11] and
used by methods including DWM [12], TFFM [13], Chromia
[17], and the methods based on DNA shapes [21]. Position de-
pendencies proposed in these literatures are non-independent
influence among positions that spans a few base pairs and are
referred to as higher order dependencies. However, the higher
order dependencies in these literatures only span a few base
pairs, for example, the higher order dependencies extracted in
Tomovic and Oakeley’s work [10] span only 12 base pairs
on average. DeepBind by Alipanahi et al. [22] and DeepSEA
by Zhou and Troyanskaya [23] attempted to capture higher
order dependencies using more convolution layers. However,
as Zeng et al. [25] pointed out that the performance of deep
convolutional neural networks tends to decline when more
convolution layers are used. In other words, learning higher
order dependencies through higher convolution layers have
very limited power to improve performance for predictions.
DanQ reported by Quang and Xie [24] extracts higher order
dependencies by combining RNN and CNN. However, DanQ
[24] requires a lot of computer resources and it cannot clear the
captured higher order dependencies, which are very important
to understand TF-DNA interactions.

Histone modification features are DNA fragment features

and already contain position dependencies. In this work, we
extract position dependencies spanning more base pairs by
extracting dependencies among histone modification features.
As CNN is quite suited in extracting dependencies from a
sequence [26], we propose a novel method, referred to as
CNN TF, to extract higher order dependencies by applying
CNN to histone modification features. Higher order depen-
dencies are position dependencies that spans a number of
base pairs. As histone modification features contain position
dependencies spanning more base pairs than the position
dependencies proposed in literatures [10–13], CNN TF can
extract higher order dependencies at a larger scale than the
methods presented in the literature[10–13]. In addition, our
proposed CNN TF also contains a CNN to extract position
dependencies from sequence features. In contrast to higher
order dependencies, position dependencies extracted from se-
quence features span fewer base pairs. So, we refer to the
position dependencies extracted by CNN TF from sequence
features as low order dependencies. The extracted higher
order dependencies and low order dependencies are used in
combination for predictions. The resource and executable code
is freely available at http://www.hitsz-hlt.com:8080/CNNTF/
and http://hlt.hitsz.edu.cn/CNNTF/.

II. METHOD AND MATERIALS

According to recently published works [27–29], a complete
prediction model in bioinformatics should contain five basic
components: a validation benchmark dataset(s), an effective
feature extraction procedure, an efficient predicting algorithm,
a set of fair evaluation criteria and fair comparisons with state-
of-the-art methods. In this section, the definition of TFBSs for
our prediction task will be introduced first. Then, details of the
five components of our proposed CNN TF will be described
in sequence.

A. TF binding sites (TFBSs)

Most studies used the ChIP-seq experiments [3] to identify
TFBSs. The ChIP-seq experiments provide a peak for each
TFBS. The obtained peaks can be provided in one of two
formats. One is called narrow peak and the other is called
broad peak. Both formats provide the chromosome, the start
position, the end position and the signal for every peak. The
narrow peak format, which requires technically more sophisti-
cated equipments to get, can provide more accurate positions
for TFBSs than the broad peak format. However, some datasets
are provided in only the broad peak format. In this work,
the narrow peak format will be used whenever available.
Otherwise, the broad peak format will be used. The peaks in
both of the two formats can be used to locate TFBSs. Although
TFBSs are short and often degenerate sequence motifs, their
contexts related to their functions may still contain many base
pairs. The context of TFBSs in promoters contains 100 to
1000 base pairs and that of TFBSs in enhancers contains
50 to 1500 base pairs, respectively. In order to incorporate
context information into predictions, TFBSs should be defined
as sequences containing both the peaks and their context.
Based on the study completed by Won et al. [17], we define a
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TFBS as a 2000-bp DNA segment for each peak by taking the
midpoint of the peak as the center of the observation window.
For a peak with the midpoint at the position i in the genome,
the TFBS can be defined as

Ti = Ni−999Ni−998· · ·N i−1NiNi+1· · ·N i+999Ni+1000 (1)

where Ni denotes the nucleotide at the position i. Contrast to
TFBSs, non-TFBSs are defined as 2000 bp DNA fragments
which cannot be bound by the target TF. Therefore, TFBS
predictions are defined as a binary classification problem. The
input of the problem are 2000-bp DNA sequences and the
output are whether the input DNA sequences are TFBSs or
non-TFBSs.

B. Datasets

Two sets of datasets are used to evaluate CNN TF: 13 TFs
in the mES cell and 5 TFs in 5 cell-types of humans.

13 TFs in the mES cell: 13 TFs in the mouse embryonic
stem (mES) cell have been widely used by multiple TFBS pre-
diction methods: Zfx, CTCF, c-Myc, n-Myc, E2f1, Esrrb, Klf4,
Tcfcp2l1, Nanog, Oct4, Smad1, Sox2, and STAT3 [30, 31]. For
these TFs, the TFBSs are obtained by ChIP-seq experiments
[30, 31] and the peaks can be obtained from a literature [32]
and our web server freely. The 2000-bp sequences are non-
TFBSs if and only if they are do not overlap with each other
nor overlap with the known TFBSs. As we can only get the
histone modification features for 18 autosomes and the X
chromosome, the TFBSs and the non-TFBSs of only these
19 chromosome are used to evaluate our method. The number
of TFBSs and non-TFBSs of these 19 chromosomes are listed
in Table S1, which is made available on our website.

5 TFs in 5 cell types of humans: In order to evaluate
the influence of different cell-types on the performance of
our method, we evaluate CNN TF by a recent set of datasets
collected by the Gene Expression Omnibus (GEO) [33]. In
this set, five dissimilar TFs are selected: CTCF, JunD, REST,
GABP and USF2 and five dissimilar cell-types are selected:
GM12878, H1-hESC, HeLa-S3, HepG2 and K562. These five
cell-types are chosen because they represent diverse classes
of cell-types and the ChIP-seq peaks of the five TFs in them
are available. For these TFs, the TFBSs are obtained by ChIP-
seq experiments [30, 31] and the peaks can be obtained from
a literature [16] and our web server freely. Similarly, the
2000-bp sequences, which are nonoverlapping with each other
and nonoverlapping with the known TFBSs, are considered
as non-TFBSs. As most TFs do not have TFBSs on the Y
chromosome, we use the TFBSs and the non-TFBSs on the
22 autosomes and the X chromosome to evaluate our method.
The number of TFBSs and non-TFBSs of the 23 chromosomes
are listed in Table S2, which is made available on our website.

C. Feature representation

Both sequence features and histone modification features are
important features of TFBSs. Sequence features of a TFBS
are defined by the nucleotides within it and can be calculated
by concatenating the one-hot vector of these nucleotides. So

sequence features of the TFBS Ti can be represented as a
feature matrix with dimension of 4× 2000 as follows

STi
= [O(Ni−999), · · · , O(Ni), · · · , O(Ni+1000)] (2)

where O(Ni) denotes the one-hot vector of the nucleotide Ni.
Histone modification features refer to the post-translational
modification levels of histones in chromatin structures. In this
study, 8 types of histone modification features are used for the
TFs in the mES cell: H3, H3K4me1, H3K4me2, H3K4me3,
H3K9me3, H3K36me3, H3K20me3, and H3K27me3. The
ChIP-seq data for these histone modification features can
be obtained from literatures [34, 35] and our web server
freely. For the 5 TFs in 5 cell-types of humans, 7 types of
histone modification features are used: H3K4me2, H3K4me3,
H4K20me1, H3K9ac, H3K27ac, H3K27me3 and H3K36me3.
The ChIP-seq data for these histone modification features can
be obtained from a work [16] and our web server freely.
According to Won et al’s study [17], as the resolution for
the ChIP-seq experiments is 25-bp, 25-bp bin is used as the
unit to measure histone modification features. First, the histone
modification features for each 25-bp bin are estimated by
calculating the number of ChIP reads overlapping the bin. And
then, the histone modification features for each 100-bp bin are
calculated by averaging the histone modification features of the
four 25-bp bins within it. So the histone modification features
for the TFBS Ti can be represented as

CTi
= [H(Ni−999, · · · , Ni−898), · · · , H(Ni−99, · · · , Ni),

· · · , H(Ni+901, · · · , Ni+1000)] (3)

where H(·) denotes the histone modification features over
100-bp bins. The TFBSs of the TFs in mES cell can be
represented as feature matrices with dimension of 8×20 while
the TFBSs of the TFs in the five cell-types of humans can be
represented as feature matrices with dimension of 7× 20.

D. Convolutional neural network(CNN)

In this work, we propose to apply CNN to sequence
features and histone modification features to extract low order
dependencies and higher order dependencies, respectively .
This is where the name of our method CNN TF is derived
from. Then the extracted low order dependencies and higher
order dependencies are fed into a softmax classifier for TFBS
predictions.

Our proposed framework of CNN TF is shown in Fig 1.
The CNN TF model consists of two CNNs: one is used for
extracting low order dependencies from sequence features and
the other is used for extracting higher order dependencies from
histone modification features. Both the two CNNs contain
three layers: the convolution layer, the rectification layer,
and the pooling layer. Finally, the feature representations
learned by the two CNNs are fed into a softmax classifier
for predictions. Training for CNN TF includes three sets of
parameters: (1) filters FS and thresholds bS in the CNN for
sequence features S, (2) filters FC and thresholds bC in the
CNN for histone modification features C, and (3) the weights
W for classification, where W0 and W1 are weight vectors for
TFBS and non-TFBS, respectively. For a TFBS T , CNN TF
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Fig. 1. The schematic graph of the architecture of CNN TF.
provides a real-valued score f(T ) according to the following
formula

f(T ) = softmaxW (pool(rectbS (convFS
(S)))⊕

pool(rectbC (convFC
(C)))),

(4)

where f(T ) is defined by the softmax classifier through
the concatenation operation

⊕
of two elements. The first

element is the low order dependencies learned by the CNN
from sequence features, where convFS

(), rectbS and pool()
represent the three layers in the CNN for sequence features S.
The second element is the high order dependencies learned
by the CNN from histone modification features. Similarly
convFC

(), rectbC and pool() denote the three layers in the
CNN for histone modification features C. This real-valued
softmax score is used for the prediction.

Details of the two CNNs will be explained by using the
higher order dependency extraction as an instance. In the
convolution layer, let us assume that there are d filters each
has a length of m to convolve the raw input. Then, for a
TFBS T with histone modification feature representation C,
the convolution output is

X̂C = convFC
(C), (5)

where X̂C is an (20 + m − 1) × d matrix (20 denotes the
length of the sequence of histone modification features). For
the rectification layer, the input is X̂C and the output Ŷ C =
rectbC (X̂

C) is get by the following formula

Ŷ C
i,k = max(0, X̂C

i,k − bCk ), (6)

where bCk is the activation threshold for the filter k, learned in
the training process. This layer is used to identify the important
features by keeping only the scores larger than a specified
threshold. The pooling layer takes the output matrix Ŷ C as
input and outputs an vector ~ZC with dimension of d. The
element ~ZC

k (1 ≤ k ≤ d) of vector ~ZC is computed as

~ZC
k = max(Ŷ C

1,k, · · · , Ŷ C
i,k, · · · , Ŷ C

(20+m−1),k), (7)

where Ŷ C
i,k is the element of the output matrix by the rectifi-

cation layer.
Finally, the prediction for the TFBS T is completed by the

following formula

f = softmax(Wj,2×d+1 +
d∑

k=1

Wj,k
~ZS
k +

d∑
k=1

Wj,(d+k)
~ZC
k ),

(8)
where j denotes the prediction label (j = 0 and j = 1 denote
the TFBS and the non-TFBS, respectively). W0,∗ is the weight
vector for classifying input sequences as the TFBSs while
W1,∗ is the weight vector for classifying input sequences as
the non-TFBSs, ~ZS represents the low order dependencies
learned by the CNN from sequence features, ~ZC represents
the high order dependencies learned from the CNN from
histone modification features, d denotes the dimension of these
two representations. We trained CNN TF using the following
hyperparameters: both the two CNNs have 100 filters of length
10 and the dropout probability for both the two CNNs are 0.5.

III. RESULTS

Four sets of evaluations are conducted here. The first ex-
periment compares higher order dependencies with low order
dependencies as well as their combined use on the 13 TFs
in the mES cell. The second experiment compares CNN TF
with traditional classifiers which cannot extract dependencies
by same features. The third experiment evaluates the influence
of different cell-types on the performance of CNN TF by
the five TFs in the five cell-types of humans and the last
experiment compares our proposed CNN TF with state-of-the-
art methods. Finally, based on the 13 TFs in the mES cell, we
analyze the higher order dependencies learned by CNN TF.
In this section, definitions of metrics for our evaluation and
parameter settings will be introduced first.

A. Evaluation Metrics and parameter settings

For TFBS predictions, since negative instances are far more
than positive instances, we evaluate our proposed CNN TF
using the Area under the Precision-Recall curve (AUPR)[36]
and the positive predictive value (PPV). The Precision-Recall
curve plots the precision versus the recall of different thresh-
olds on the importance score [37]. AUPR measures the sim-
ilarity of the predictions to a known gold standard and is a
more appropriate evaluation metric for extremely unbalanced
datasets than AUC [37, 38]. The value of AUPR is between 0
and 1, indicating the lowest and highest performance, respec-
tively. The positive predicative value (PPV) [17] is another
useful evaluation metric for TFBS predictions, which can be
calculated by following formula

PPV = TP/(TP + FP ), (9)

where TP denotes the number of true positives and FP
denotes the number of false positives. The leave-one-
chromosome-out cross-validation method is applied to evaluate
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the performance of CNN TF. In this validation method, one
chromosome is used for test, one used for validation and the
remaining chromosomes are used for training. The above test
process is repeated for every chromosome and the performance
is the average over all the chromosomes.

Two experiments are conducted to identify the optimal
length for TFBSs and the optimal ratio of negative to positive
instances in the training set by using CTCF in the mES
cell as an instance. Fig. 2(A) shows the AUPR for TFBSs
with different lengths when the ratio of negative to positive
instances in the training set is set to 1. Results indicate that
the length has very little effect on the performance of CNN TF
although TFBSs with length of 2000 achieve the highest
AUPR. This is consistent with Won et al.’s work [17]. This is
why we define TFBSs as DNA segments with 2000 nucleotides
in our work. Fig. 2(B) shows the AUPR for training sets with
different ratio of negative to positive instances. Results indicate
that CNN TF achieves the highest AUPR when the ratio of
negative to positive instances in the training set is 3. So in this
paper, the ratio of negative to positive instances in the training
set is set to 3.

To analyze the performance on test sets with different
ratio of negative to positive instances, we also conduct an
experiment on CTCF in the mES cell. Fig. 3 shows the AUPR
of both low order and higher order dependencies as well as
their combined use. As expected, AUPR declines gradually
when the ratio increases. Due to the length limit of this
paper, we measure the performance of CNN TF in only two
representative settings: (1) for the TFs in the mEs cell, the test
set contains all the negative and positive instances; and (2) for
the TFs in humans, the test set uses negative to positive ratio
of 1.

B. Performances of low order and higher order dependencies

low order dependencies and higher order dependencies are
learned by CNN from sequence features and histone modi-
fication features, respectively. To demonstrate the superiority
of higher order dependencies over low order dependencies for
TFBS predictions, we compare their predicting performance
on the 13 TFs in the mES cell by the leave-one-chromosome-
out cross-validation.

TABLE I shows the AUPRs of low order and higher order
dependencies as well as their combined use on the 13 TFs
in the mES cell. Among the 13 TFs in the mES cell, higher
order dependencies outperforms low order dependencies sig-
nificantly on 11 TFs while low order dependencies outper-
forms higher order dependencies on only 2 TFs. The AUPR
of low order and higher order dependencies demonstrate the
superiority of higher order dependencies clearly and there is no
sign of overfitting. When these two dependency types are used
in combination, it outperforms the two individual dependency
types significantly on 12 TFs. This is a clear indication that
low order dependencies and higher order dependencies are
complimentary for TFBS predictions. The exception is Smad1
in which the combined use achieves lower performance than
higher order dependencies.This is because the performance
of the low order dependencies is too low compare to that of

TABLE I
AUPR OF LOW ORDER AND HIGH ORDER DEPENDENCIES ON THE 13 TFS

IN MES CELL

TF low order higher order combine p-valuea p-valueb

Zfx 0.511 0.654 0.725 3.25e-09 2.36e-4
CTCF 0.821 0.571 0.894 4.06e-22 2.74e-33
c-Myc 0.345 0.523 0.535 1.17e-08 1.01e-07
n-Myc 0.523 0.675 0.702 1.83e-08 9.79e-06
E2f1 0.363 0.802 0.806 5.54e-35 6.85e-03
Esrrb 0.683 0.572 0.821 1.86e-07 2.18e-19
Klf4 0.508 0.585 0.696 5.71e-03 2.64e-04

Tcfcp211 0.552 0.611 0.748 1.53e-04 1.46e-13
Nanog 0.214 0.250 0.485 1.10e-04 2.91e-26
Oct4 0.131 0.271 0.338 4.91e-12 2.40e-04

Smad1 0.012 0.168 0.167 1.25e-17 9.38e-01
Sox2 0.244 0.360 0.526 1.29e-10 9.16e-13

STAT3 0.102 0.205 0.210 1.01e-10 7.17e-03
a denotes the comparison between low order and higher order dependencies,
b denotes the maximum p-value for the comparisons between the combine
used and the two individual dependency types. The bold and underscore

numbers denote the best and the second best performers, respectively.

higher order dependencies. This further demonstrates the supe-
rior of higher order dependencies over low order dependencies.
Note that two sets of p-values in this experiment are calculated
by Wilcoxon rank sum test and all the p-values in the following
text are calculated by Wilcoxon rank sum test. The p-values
show that both performance improvements by higher order
dependencies and the combined use are significant with p-
value at no more than 7.17e-03.

C. Comparisons with typical bio-classifiers

The main advantage of our proposed CNN TF is that it
can extract both low order dependencies and higher order
dependencies from sequence features and histone modification
features, whereas typical classifiers including support vector
machine (SVM) [39], random forest (RF) [20] and Multilayer
perceptron (MLP) [40] can only use low order dependencies
contained in histone modification features. To demonstrate
that higher order dependencies are indeed useful for TFBS
predictions, we compare CNN TF with SVM, RF and MLP,
all of which cannot capture higher order dependencies. SVM,
RF and MLP require numeric features and cannot be fed
with sequence data directly. Thus the input to these meth-
ods contains two integral parts: (1) normalized occurrence
frequencies of nucleotides, dinucleotides and trinucleotides as
well as (2) histone modification features. So the input features
for instances can be represented as vectors with dimension of
(4+ 16+ 64+ 20×m), where m denote the number of used
histone modification feature types.

The comparison among CNN TF and the three typical
classifiers is completed on the 13 TFs in the mES cell by
the leave-one-chromosome-out cross-validation. The AUPRs
of CNN TF and the three traditional classifiers are shown
in TABLE II. TABLE II shows that on 12 out of the 13
TFs, CNN TF outperforms all the other classifiers by a larger
margin with p-value of 8.34e-4 at least, to indicate that the
improvements are very significant. More impressively, the
improvements for CTCF, Esrrb and Nanog are more than 20%,
the improvements for Zfx, Klf4, Tcfcp211 and Sox2 are more



1545-5963 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2892124, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0 2 2 0 0 2 4 0 0 2 6 0 0
0 . 8 9 2

0 . 8 9 4

0 . 8 9 6

0 . 8 9 8

0 . 9 0 0

0 . 9 0 2

0 . 9 0 4

 

 
AU

PR

L e n g t h  o f  T F B S s
1 2 3 4 5 6 7

0 . 9 0 1

0 . 9 0 2

0 . 9 0 3

0 . 9 0 4

0 . 9 0 5

0 . 9 0 6

0 . 9 0 7

0 . 9 0 8

 

 

AU
PR

     R
 

a
 

t
 

i
 

o
 

of n
 

e
 

g
 

a
 

t
 

i
 

v
 

e
 

to p
 

o
 

s
 

i
 

t
 

i
 

v
 

e
 

i
 

n
 

s
 

t
 

a
 

n
 

c
 

e
 

s(A) (B)

Fig. 2. (A) The AUPR for TFBSs with different length. (B) The AUPR for training sets with different ratio of negative to positive instances.
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Fig. 3. The AUPR for test sets with different ratio of negative to positive
instances.
than 10%, the improvements for c-Myc, n-Myc and Oct4 are
more than 5% and the improvments for the other 2 TFs are
more than 2%. For Smad1, although SVM achieves higher
AUPR than our method, the improvement is not significant as
indicated by p-value of 2.14e-01. This evaluation validates that
high order dependencies learned by CNN TF indeed supply
additional useful information for TFBS predictions.

D. Performances of CNN TF on TFs in cell-types of humans

Several recent studies have reported that TF bindings are
influenced by chromatin features such as DNA accessibilities,
nucleosome occupancies, or the presence of some specific
histone post-translational modifications. These chromatin fea-
tures are different for different cell-types. So in this study,
CNN TF is applied to predict TFBSs for TFs in multiple
different cell-types to analyze their influence on prediction
performances. For each TF, five cell-types are considered:
GM12878, H1-hESC, HeLa-S3, HepG2 and K562 in humans.
We first evaluate the influence of different cell-types on the
contributions of low order dependencies and higher order
dependencies for TFBS predictions. The AUPRs of low order

TABLE II
AUPR OF CNN TF AND THREE STATE-OF-THE-ART TRADITIONAL

CLASSIFIERS ON THE 13 TFS IN THE MES CELL

TF CNN TF SVM RF MLP p-valuea

Zfx 0.725 0.437 0.606 0.565 8.02e-09
CTCF 0.894 0.627 0.467 0.659 3.79e-16
c-Myc 0.535 0.323 0.453 0.425 8.34e-04
n-Myc 0.702 0.477 0.611 0.579 9.71e-07
E2f1 0.806 0.581 0.760 0.759 1.07e-04
Esrrb 0.821 0.523 0.419 0.539 1.27e-17
Klf4 0.696 0.465 0.492 0.534 8.72e-07

Tcfcp211 0.748 0.541 0.460 0.593 9.39e-12
Nanog 0.485 0.268 0.200 0.248 4.64e-24
Oct4 0.338 0.284 0.197 0.218 4.36e-08

Smad1 0.167 0.196 0.150 0.137 2.14e-01
Sox2 0.526 0.383 0.266 0.302 1.06e-11

STAT3 0.210 0.188 0.158 0.124 9.81e-05

a denotes the maximum p value of the comparisons between CNN TF and
the three state-of-the-art traditional classifiers. The bold and underscore

numbers denote the best performers and the second best performers,
respectively.

dependencies, higher order dependencies and their combined
use are shown in TABLE III. Results show that for each TF,
the performance of higher order dependencies for different
cell-types are different. For GABP, higher order dependencies
outperform low order dependencies significantly in all the five
cell-types. When the two features are combined, the predicting
performance is improved significantly in all the five cell-
types. On the other hand, low order dependencies perform
significantly better than higher order dependencies for REST
in all the five cell-types. For REST too, the combined use still
gains significant improvement in all the five cell-types. For the
remaining three TFs, no single dependency type plays a dom-
inant role. However, the performances for most cell-types are
improved significantly when the two features are combined.
This experiment clearly shows that low order dependencies
and higher order dependencies have different contributions
in the TFBS prediction for different cell-types. Furthermore,
the two types of dependencies are complementary to each
other and thus their combined use outperforms any single use
irrespective of their dominance as a single dependency type
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for different cell-types.

E. Comparison between CNN TF and state-of-the-art meth-
ods on TFs in the mES cell

In this experiment, we compare our method with sev-
eral state-of-the-art methods including Chromia [17], Cluster-
Buster (CB) [41], MCAST [42], EEL [43] and Stubb [44]
on the 13 TFs in the mES cell. Stubb has two versions: one
is called Stubb-Single (SS) and the other is called Stubb-
Multiple (SM). Chromia was proposed by Won at al. [19]
based on a HMM model, in which both histone modification
features and sequence features are used for learning feature
representations. In Chromia, three HMM models including
the promoter model, the enhancer model and the background
model are trained and the log-odd score of the promoter model
or the enhancer model to the background model is used for
the prediction. Cluster-Buster [41] uses motifs documented in
databases including JASPAR [45] and TRANSFAC [46] or
predicted by de novo motif finding algorithms to search for
TFBSs from test sequences. MCAST [42] uses a motif-based
HMM model with several novel features to model TFBSs, for
which a DNA database and a collection of known binding site
motifs are used as inputs. In MCAST, motif-specific p-values
are used to identify motif occurrences. EEL [43] uses motif
conservation information and TFBS clusterings in the predic-
tion model, which locates the enhancer elements according to
a simplified biochemical and physical model of TF bindings
[43]. In EEL, the binding score of a putative TFBS is calcu-
lated by aligning to the orthologous sequences. Stubb [44] uses
a HMM framework to model enhancers by including motif
conservation information and TFBS clusterings. In Stubb, the
free energy calculated by Stubb is used for the prediction,
where Stubb-Single uses correlations between binding sites to
calculate the free energy while Stubb-Multiple incorporates
phylogenetic comparisons among sequences from multiple
species to calculate the free energy. For hyper parameters used
in these methods, see Supplementary Note in our web server.

As both Stubb and EEL require pairwise alignments with
other genomes and it is too time-consuming to evaluate their
performance on the entire genome, only 20 chunks of genomic
sequences (total513,846,568 bp) [19] that have pairwise align-
ments with the human genome were selected from the UCSC
genome browser for test. The remaining genomic sequences
are used for training. Note that the TFBSs for c-Myc and n-
Myc have similar properties and Chromia combined them into
a dataset labeled by Myc. So, we also incorporated them into
a dataset. In the performance evaluation for all the 6 state-
of-the-art methods and our CNN TF method, only the top
600 predicted sites with larger prediction weights are used
to estimate their performance. The PPV score of the top 600
predicted sites for each method is calculated and shown in
TABLE IV, where the PPVs of the 6 state-of-the-art methods
are referred from Won et al.’s work [17].

Results show that CNN TF achieves obvious improvements
for all the 12 TFs. For some TFs, the improvement achieved by
CNN FT is very promising. For example, the improvement for

TABLE III
AUPR OF LOW ORDER DEPENDENCIES AND HIGH ORDER DEPENDENCIES

ON TFS IN CELL-TYPES OF HUMANS

TF CELL low
order

higher
order

Combine p-valuea p-valueb

CTCF GM12878 0.954 0.742 0.945 1.02e-02 2.46e-14
H1-hESC 0.893 0.698 0.933 1.33e-14 2.50e-18
HeLa-S3 0.895 0.729 0.935 1.00e-06 3.58e-07
HepG2 0.932 0.781 0.942 2.86e-08 1.59e-12
K562 0.892 0.750 0.912 8.73e-06 2.19e-09

GABP GM12878 0.916 0.964 0.984 1.42e-06 5.61e-06
H1-hESC 0.837 0.844 0.877 2.29e-01 1.81e-02
HeLa-S3 0.963 0.970 0.990 5.60e-03 1.69e-02
HepG2 0.939 0.954 0.983 2.08e-02 2.89e-04
K562 0.890 0.954 0.962 1.00e-06 1.76e-02

JunD GM12878 0.658 0.989 0.990 3.65e-10 7.78e-01
H1-hESC 0.929 0.821 0.961 1.61e-04 8.76e-04
HeLa-S3 0.954 0.969 0.989 8.04e-09 3.21e-02
HepG2 0.981 0.730 0.972 3.08e-09 5.32e-02
K562 0.879 0.860 0.937 5.12e-01 3.85e-03

REST GM12878 0.822 0.791 0.938 1.10e-01 2.02e-06
H1-hESC 0.853 0.731 0.931 6.11e-07 1.98e-10
HeLa-S3 0.876 0.775 0.946 2.52e-03 2.49e-06
HepG2 0.846 0.770 0.947 1.79e-04 1.52e-11
K562 0.854 0.890 0.947 1.65e-03 6.93e-09

USF2 GM12878 0.947 0.898 0.955 1.91e-01 1.28e-02
H1-hESC 0.880 0.831 0.919 5.17e-02 3.02e-04
HeLa-S3 0.930 0.873 0.975 2.81e-04 1.16e-02
HepG2 0.849 0.835 0.930 6.49e-01 2.79e-04
K562 0.832 0.903 0.945 7.34e-03 6.22e-03

a denotes the comparison between low order dependencies and higher order
dependencies, b denotes the maximum p-value of the comparisons between

the combine use and the two individual dependency type. The bold and
underscore numbers denote the best performers and the second best

performers, respectively.

TABLE IV
PPV OF CNN TF AND THREE STATE-OF-THE-ART METHODS ON THE 13

TFS IN THE MES CELL

TF CNN-
TF

Chromia CB MCAST EEL SS SM

Zfx 81.5% 51.7% 5.6% 0.2% 24.8% 46.9% 26.0%
CTCF 98.6% 13.2% 51.3% 37.9% 44.0% 13.4% 3.9%
Myc 82.8% 57.8% 7.1% 0.4% 3.3% 20.2% 17.8%
E2f1 98.1% 85.3% 0.0% 1.3% 0.5% 12.0% 8.2%
Esrrb 66.8% 23.5% 9.7% 4.9% 16.2% 13.9% 5.1%
Klf4 60.0% 34.2% 5.7% 0.3% 12.5% 28.6% 9.5%
Tcfcp211 77.3% 33.8% 5.0% 11.5% 27.2% 12.7% 5.3%
Nanog 47.3% 7.8% 0.0% 0.4% 0.7% 1.4% 0.1%
Oct4 25.0% 15.0% 0.0% 2.8% 3.5% 0.5% 0.0%
Smad1 10.6% 1.0% 0.0% 0.4% 0.2% 0.0% 0.0%
Sox2 35.8% 4.2% 0.0% 2.4% 2.8% 0.2% 0.8%
STAT3 17.1% 1.0% 0.0% 0.2% 1.6% 2.9% 0.8%

CB denotes Cluster-Buster, SS denotes Stubb-Single and SM denotes
Stubb-Multiple. The bold and underscore numbers denote the best

performers and the second best performers, respectively.

CTCF is over 60% PPV and the improvements for Esrrb, Tcfcp
and Nanog are over or near 40% PPV. Note that some of the
state-of-the-art methods cannot even provide any true TFBS
for some TFs. For example, Stubb-Single and Stubb-Multiple
cannot identify any true TFBS for Smad; Cluster-Buster cannot
identify any true TFBS for E2f1, Nanog, Oct4, Smad1, Sox2
and STAT3. This comparison validates the usefulness of our
proposed CNN TF for TFBS predictions.
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F. Comparisons of CNN TF with state-of-the-art methods on
TFs in cell-types of humans

DNA shapes represent the 3D structures of DNA. Recently,
Mathelier at al. [21] proposed a DNA shape based method for
TFBS predictions in vivo. Four DNA shape features including
the helix twist (HelT), the minor groove width (MGW), the
propeller twist (ProT), and the Roll were used to represent
putative TFBSs. These four DNA shape features were com-
puted by a DNA shape method [47]. In Mathelier et al’s work,
four prediction models were developed: (1) one-hot+shape,
which combines the one-hot encoding of nucleotides with
DNA shape features; (2) PSSM+shape, which combines PSSM
scores with DNA shape features; (3) TFFM d+shape, which
combines detailed TFFM scores and DNA shape features, and
(4) TFFM f+shape, which combines 1st-order TFFM scores
and DNA shape features. The one-hot encoding, the PSSM
scores and the TFFM scores [13] used in these DNA shape
based models are representations of DNA sequence features.
The difference between CNN TF and these four models is that
the four models only can extract low order dependencies by
including DNA shape features whereas CNN TF can extract
both low order dependencies and higher order dependencies.

The evaluation is conducted on the five TFs in the five
cell-types of humans by the leave-one-chromosome-out cross-
validation. The results are listed in TABLE V. TABLE V
shows that CNN TF outperforms the four DNA shape based
models significantly on all the 25 cell-type-TF pairs. A pair
denotes the prediction task of a TF in a cell-type. The max-
imum improvement and the minimum improvement achieved
by CNN TF are 0.329 AUPR and 0.053 AUPR, respectively.
The average improvement is 0.152 AUPR, which is a very
large improvement. As the four shape feature based models
can extract only low order dependencies by including DNA
shape features while our proposed CNN TF can extract both
low order dependencies and higher order dependencies, the
larger improvements achieved by CNN TF are attributed the
higher order dependencies learned by CNN TF.

In addition to the DNA shape based method, deep learned
methods including DeepSEA [23] and DanQ [24] also
achieved state-of-the-art performances. In this section, we
compare CNN TF to DeepSEA [23] and DanQ [24] on the
five TFs in the five cell-types of humans by the leave-one-
chromosome-out cross-validation. As the hyper parameters of
the three methods have been tuned by their authors, we use
the same hyper parameters reported in the respective literature
for these methods to make a fair comparison. DeepSEA
contains three convolution layers and two max pooling layers
in alternating order, followed by one fully connected layer
and and a sigmoid output layer. The three convolution layers
have 320, 480 and 960 kernels, respectively and the size of
all the kernels is 8. Both the window size and the step size of
the two max pooling layers are 4. The fully connected layer
has 925 neurons. DanQ contains one convolution layer and
one max pooling layer. The max pooling layer is followed by
a bi-directional long short-term memory network (BLSTM),
followed by a fully connected layer and a sigmoid output layer.
The convolution layer contains 320 convolution kernels with

TABLE V
AUPR OF THE FOUR DNA SHAPE BASED MODELS AND CNN TF ON THE

TFS IN CELL-TYPES OF HUMANS

TF CELL One-
hot

PSSM TFFM d TFFM f CNN-
TF

p-value

CTCF GM12878 0.777 0.775 0.758 0.762 0.945 4.98e-03
H1-hESC 0.792 0.787 0.765 0.769 0.933 8.57e-03
HeLa-S3 0.763 0.759 0.746 0.748 0.935 2.29e-02
HepG2 0.788 0.785 0.769 0.774 0.942 8.12e-03
K562 0.780 0.778 0.761 0.764 0.912 4.44e-02

GABP GM12878 0.833 0.830 0.843 0.841 0.984 9.16e-03
H1-hESC 0.824 0.821 0.815 0.815 0.877 1.96e-03
HeLa-S3 0.804 0.805 0.794 0.791 0.990 7.67e-03
HepG2 0.856 0.852 0.844 0.850 0.983 9.11e-03
K562 0.833 0.829 0.822 0.826 0.962 2.32e-02

JunD GM12878 0.711 0.711 0.683 0.692 0.990 1.83e-14
H1-hESC 0.799 0.797 0.782 0.786 0.961 7.83e-10
HeLa-S3 0.837 0.832 0.808 0.813 0.989 3.01e-15
HepG2 0.815 0.810 0.790 0.794 0.972 4.09e-18
K562 0.822 0.818 0.799 0.804 0.937 1.61e-09

REST GM12878 0.785 0.782 0.764 0.774 0.938 2.07e-02
H1-hESC 0.787 0.786 0.762 0.769 0.931 2.07e-02
HeLa-S3 0.602 0.607 0.617 0.592 0.946 1.75e-19
HepG2 0.791 0.791 0.777 0.777 0.947 2.23e-02
K562 0.789 0.785 0.768 0.772 0.947 1.55e-02

USF2 GM12878 0.827 0.825 0.807 0.810 0.955 8.58e-10
H1-hESC 0.839 0.835 0.818 0.822 0.919 4.65e-05
HeLa-S3 0.819 0.815 0.800 0.804 0.975 5.76e-09
HepG2 0.840 0.836 0.815 0.820 0.930 1.68e-05
K562 0.822 0.821 0.800 0.802 0.945 1.00e-06

The bold and underscore numbers denote the best performers and the
second best performers, respectively.

size of 26. 13 is used as both the window size and the step size
of the max pooling layer. The fully connected layer contains
925 neurons. For DanQ, Quang and Xie [24] proposed an
alternative model, called DanQ-JASPAR, by initializing half of
the kernels in the CNN with motifs from the JASPAR database
[48]. The convolution layer in DanQ-JASPAR contains 1,024
kernels of size 30. Both the window size and step size of the
max pooling are set to be 15. Detailed specifications of the
architectures and hyper parameters used in these three methods
are given in the Supplementary Note in our web server.
The comparison among CNN TF and these three methods is
conducted on the five TFs in the five cell-types of humans
as 7 types of histone modification features are available for
these five cell-types. The tasks in DeepSEA, DanQ and DanQ-
JASPAR contain 32 prediction tasks: the TFBS predictions of
the five TFs in the five cell-types and the peak predictions
of H3K4me2, H3K4me3, H4K20me1, H3K9ac, H3K27ac,
H3K27me3 and H3K36me3. Finally, the TFBS predictions of
the five TFs in the five cell-types are used for the comparative
study.

The AUPRs of CNN TF and the three state-of-the-art
methods are listed in TABLE VI. Result shows that DanQ
achieves higher AUPR than DanQ-JASPAR on 11 cell-type-
TF pairs and achieves lower AUPR than DanQ-JASPAR on
the remaining pairs. It indicates that DanQ and DanQ-JASPAR
in practice have comparable performances. Result also shows
that DanQ performs better than DeepSEA by 0.054 AUPR on
average for the 25 cell-type-TF pairs, which is consistent with
the work of Quang and Xie [24]. Note that CNN TF performs
better than DeepSEA by 0.238 AUPR on average for all the
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TABLE VI
AUPR OF CNN TF AND FOUR STATE-OF-THE-ART METHODS ON THE

TFS IN CELL-TYPES OF HUMANS

TF CELL DanQ DanQ-
JASPAR

DeepSEA CNN-TF

CTCF GM12878 0.773 0.737 0.684 0.945
H1-hESC 0.802 0.762 0.692 0.933
HeLa-S3 0.716 0.691 0.649 0.935
HepG2 0.805 0.763 0.706 0.942
K562 0.723 0.689 0.626 0.912

GABP GM12878 0.776 0.836 0.746 0.984
H1-hESC 0.748 0.762 0.721 0.877
HeLa-S3 0.631 0.689 0.622 0.990
HepG2 0.758 0.813 0.745 0.983
K562 0.743 0.760 0.718 0.962

JunD GM12878 0.698 0.721 0.681 0.990
H1-hESC 0.674 0.670 0.625 0.961
HeLa-S3 0.766 0.771 0.717 0.989
HepG2 0.836 0.850 0.784 0.972
K562 0.639 0.638 0.576 0.937

REST GM12878 0.595 0.579 0.576 0.938
H1-hESC 0.599 0.588 0.554 0.931
HeLa-S3 0.581 0.582 0.542 0.946
HepG2 0.612 0.584 0.593 0.947
K562 0.628 0.631 0.613 0.947

USF2 GM12878 0.658 0.685 0.602 0.955
H1-hESC 0.705 0.731 0.632 0.919
HeLa-S3 0.629 0.640 0.546 0.975
HepG2 0.687 0.755 0.572 0.930
K562 0.658 0.717 0.565 0.945

The bold and underscore numbers denote the best performers and the
second best performers, respectively.

pairs. As DeepSEA [23] can extract only low order dependen-
cies while both DanQ and our proposed CNN TF can extract
both low order dependencies and higher order dependencies,
the large improvements achieved by DanQ and CNN TF over
DeepSEA are contributed by higher order dependencies. When
comparing CNN TF with DanQ, result shows that CNN TF
performs better than DanQ for all the 25 cell-type-TF pairs.
The least and the most improvement achieved by CNN TF
is 0.188 AUPR and 0.429 AUPR, respectively. The average
improvement on the 25 cell-type-TF pairs is 0.313 AUPR,
which is quite significant. Although DanQ [24] can extract
higher order dependencies by incorporating RNN with CNN,
our proposed CNN TF performs better than DanQ by at least
0.188 AUPR for the 25 pairs. It indicates that the higher order
dependencies learned by CNN TF using histone modification
features are more useful for predictions than that learned by
DanQ which only made use of sequence features available at
the time.

IV. DISCUSSION

Distinct histone modification features have been observed
at different genomic loci. Won et al. [17] investigated the
eight histone modification features for the TFBSs of the 13
TFs in the mES cell. They found that H3K4m1, H3K4m2 and
H3K4m3 show strong signals around the TFBSs for all the 13
TFs while H3K27m3 shows much weaker signals around the
TFBSs. More specifically, H3K4me1 and H3K4me2 present
bimodal profiles for the TFBSs of all the 13 TFs; H3K4me3
shows strong peaks for the TFBSs of E2F1, c-Myc, n-Myc and
Zfx, intermediate peaks for the TFBSs of Esrrb, Klf4, STAT3

and Tcfcp211, and weak signals for the TFBSs of CTCF,
Nanog, Oct4, Smad1 and Sox2; H3K36me3 shows relatively
strong signals for the TFBSs of E2f1, c-Myc, n-Myc and Zfx;
and H3K9me3, H3K20me3 and H3K27me3 show low signals
for the TFBSs of all the 13 TFs.

To validate the higher order dependencies learned by
CNN TF, we analyze the extracted higher order dependencies
of a TF by using a summed filter of the TF, which is calculated
by summing the d learned filters from histone modification
features of the TF according to the following formula:

F =
d∑

k=1

W0,(d+k)F
k
C , (10)

where W0,∗ is the weight vector in the softmax classifier of
CNN TF, which denotes the contributions of individual filters
for classifying inputs into TFBSs. FC denotes the learned
filters from histone modification features. For more details
about W0, please refer to Formula (8).

Due to the length limit of this paper, we only show the
summed filters for c-Myc and Oct4. The summed filters for
other TFs are listed in Figure S1 to S11 in the Additional file
1, which can be accessed from our website. Fig. 4 and Fig.
5 show the summed filters for Oct4 and c-Myc, respectively.
The x-axis denotes the 10 positions in the summed filter and
the y-axis denotes the weight for each position. Fig. 4 shows
that H3K4me1 and H3K4me2 indeed present a bimodal profile
around the TFBSs of c-Myc and H3K4me3 shows strong
signals for the TFBSs. In addition, H3K9me3, H3K20me3 and
H3K27me3 show low signal for the TFBSs. This indicates that
the learned higher order dependencies are consistent with the
dependencies analyzed from ChIP-seq signals by a previous
study [17]. Fig. 5 also shows that H3K4me1 and H3K4me2
present bimodal profile around the TFBSs. H3K4me3 and
the three repressive histone modification features including
H3K9me3, H3K20me3 and H3K27me3 show weak signals for
the TFBSs, which is also consistent with the conclusions of
the previous study [17]. These results indicate that CNN TF
can indeed capture useful higher order dependencies for the
prediction.

V. CONCLUSION

This paper presents the first study on TFBS predictions
by using dependency information among histone modification
features. Our proposed CNN TF method captures low order
dependencies as well as higher order dependencies by applying
convolutional neural network to sequence features and histob
ne modification features, respectively. Evaluations on both the
13 TFs in the mES cell and the 5 TFs in 5 different cell-types
of humans show that higher order dependencies outperform
low order dependencies significantly and the combine use
performs better than individual dependency types significantly.
This indicates that higher order dependencies are indeed more
useful than low order dependencies for TFBS predictions. Our
experiments also show that low order dependencies and higher
order dependencies are complementary to each other in the
prediction. Comparisons to state-of-the-art methods on both
the 13 TFs in the mES cell the 5 TFs in 5 cell-types of humans
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Fig. 5. The learned fragment dependency for Oct4.

show that CNN TF outperforms the state-of-the-art methods
with large improvements on all the TFs. Detailed examination
of the higher order dependencies extracted by CNN TF for all
the 13 TFs in the mES cell shows that the learned higher order
dependencies are consistent with the dependencies analyzed
from ChIP-seq signals by a previous study. Our work on TFBS
predictions indicates that the positions in the TFBSs for each
TF indeed have higher order dependencies between each other.
The positions in the TFBSs of TFs do not exist independently
when interact with DNA. Our work is a further prove that
high order dependencies do exist. As TFBSs are important
integral components for gene transcriptions and translations,
such as the TFBSs in promoters and enhancers, the extraction
and analysis of high order dependencies contained in TFBSs
can lead us to a deeper understanding of gene expression
regulation and fundamental cellular processes of humans.

One direction of our future works is to investigate how
to apply our proposed CNN TF in cross-cell-type TFBS
predictions. The second direction is to investigate how to

use the Transformer model to extract dependencies between
positions with even longer distances.
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