1,973 research outputs found

    Asymmetric sequential Landau-Zener dynamics of Bose condensed atoms in a cavity

    Get PDF
    We explore the asymmetric sequential Landau-Zener (LZ) dynamics in an ensemble of interacting Bose condensed two-level atoms coupled with a cavity field. Assuming the couplings between all atoms and the cavity field are identical, the interplay between atom-atom interaction and detuning may lead to a series of LZ transitions. Unlike the conventional sequential LZ transitions, which are symmetric to the zero detuning, the LZ transitions of Bose condensed atoms in a cavity field are asymmetric and sensitively depend on the photon number distribution of the cavity. In LZ processes involving single excitation numbers, both the variance of the relative atom number and the step slope of the sequential population ladder are asymmetric, and the asymmetry become more significant for smaller excitation numbers. Furthermore, in LZ processes involving multiple excitation numbers, there may appear asymmetric population ladders with decreasing step heights. During a dynamical LZ process, due to the atom-cavity coupling, the cavity field shows dynamical collapse and revivals. In comparison with the symmetric LZ transitions in a classical field, the asymmetric LZ transitions in a cavity field originate from the photon-number-dependent Rabi frequency. The asymmetric sequential LZ dynamics of Bose condensed atoms in a cavity field may open up a new way to explore the fundamental many-body physics in coupled atom-photon systems.Comment: 14 pages, 6 figure

    A Model of Two-Way Selection System for Human Behavior

    Full text link
    We propose a model of two-way selection system. It appears in the processes like choosing a mate between men and women, making contracts between job hunters and recruiters, and trading between buyers and sellers. In this paper, we propose a model of two-way selection system, and present its analytic solution for the expectation of successful matching total and the regular pattern that the matching rate trends toward an inverse proportion to either the ratio between the two sides or the ratio of the state total to the smaller people number. The proposed model is verified by empirical data of the matchmaking fairs. Results indicate that the model well predicts this typical real-world two- way selection behavior to the bounded error extent, thus it is helpful for understanding the dynamics mechanism of the real-world two-way selection system.Comment: 8 pages, 4 figure

    2-(1,2-Dimethyl-1H-indol-3-yl)-1-{5-[3-(1,3-dioxolan-2-yl)phen­yl]-2-methyl­thio­phen-3-yl}-3,3,4,4,5,5-hexa­fluoro­cyclo­pent-1-ene

    Get PDF
    The title compound, C29H23F6NO2S, a member of a new family of photochromic diaryl­ethene compounds having an unsymmetrically substituted hexa­fluoro­cyclo­pentene unit, displays dihedral angles between the indole and thio­phene rings of 52.5 (4)°, and between the indole ring and the planar C—C=C—C unit of the cyclopentene ring of 53.8 (6)°. The distance between the potentially reactive C atoms from the two heteroaryl substituents of 3.817 (6) Å is proven to be short enough for photocyclization to occur

    Poly[[bis­(acetonitrile-κN)bis­[μ2-2,2′-(methyl­enedithio)bis­(1,3,4-thia­diazole)-κ2 N 4:N 4′]copper(II)] bis­(perchlorate) acetonitrile solvate]

    Get PDF
    In the title compound, {[Cu(C5H4N4S4)2(C2H3N)2](ClO4)2·C2H3N}n, the CuII atom occupies a crystallographic inversion centre and is six-coordinated by six N atoms of four symmetry-related 2,2′-(methyl­enedithio)bis­(1,3,4-thia­diazole) (L) ligands and two acetonitrile mol­ecules in a slightly distorted octa­hedral geometry. The ligand L adopts an N:N′-bidentate bridging mode in a trans configuration, bridging the Cu atoms via translation symmetry, forming a two-dimensional layer-like structure. The perchlorate ions serve as acceptors for inter­molecular C—H⋯O hydrogen bonds, which link the layers into a three-dimensional network. The ClO4 − anion is disordered with an occupation ratio of 0.658:0.342

    Local and global polarization of Λ\Lambda hyperons across RHIC-BES energies: the roles of spin hall effect, initial condition and baryon diffusion

    Full text link
    We perform a systematic study on the local and global spin polarization of Λ\Lambda and Λ\overline{\Lambda} hyperons in relativistic heavy-ion collisions at beam energy scan energies via the (3+1)-dimensional CLVisc hydrodynamics model with AMPT and SMASH initial conditions. Following the quantum kinetic theory, we decompose the polarization vector as the parts induced by thermal vorticity, shear tensor and the spin Hall effect (SHE). We find that the polarization induced by SHE and the total polarization strongly depends on the initial conditions. At 7.77.7GeV, SHE gives a sizeable contribution and even flips the sign of the local polarization along the beam direction for AMPT initial condition, which is not observed for SMASH initial condition. Meanwhile, the local polarization along the out-of-plane direction induced by SHE with AMPT initial condition does not always increase with decreasing collision energies. Next, we find that the polarization along the beam direction is sensitive to the baryon diffusion coefficient, but the local polarization along the out-of-plane direction is not. Our results for the global polarization of Λ\Lambda and Λ\overline{\Lambda} agree well with the STAR data. Interestingly, the global polarization of Λ\overline{\Lambda} is not always larger than that of Λ\Lambda due to various competing effects. Our findings are helpful for understanding the polarization phenomenon and the detailed structure of quark-gluon plasma in relativistic heavy-ion collisions.Comment: 13 pages, 8 figure

    catena-Poly[[[bis­[2,2′-(propane-1,3-diyl­dithio)bis­(1,3,4-thia­diazole)-κN 4]copper(II)]-bis­[μ-2,2′-(propane-1,3-diyldithio)bis­(1,3,4-thia­diazole)-κ2 N 4:N 4′]] bis­(perchlorate)]

    Get PDF
    In the title compound, {[Cu(C7H8N4S4)4](ClO4)2}n, the CuII atom, occupying a crystallographic inversion centre, is six-coordinated by six N atoms of three symmetry-related 2,2′-(propane-1,3-diyldithio)bis­(1,3,4-thia­diazole) (L) ligands in a slightly distorted octa­hedral geometry. The ligand L adopts two kinds of coordination modes in the crystal structure; one is a monodentate coordination mode and serves to complete the octa­hedral coordination of the Cu atom and the other is an N:N′-bidentate bridging mode in a trans configuration, bridging Cu atoms via translation symmetry along the b axis into a chain structure. The perchlorate ions serve as acceptors for inter­molecular C—H⋯O hydrogen bonds, which link the chains into a three-dimensional network

    Nr1d1 Mediated Cell Senescence in Mouse Heart-Derived Sca-1+CD31− Cells

    Get PDF
    Aim: Sca-1+CD31− cells are resident cardiac progenitor cells, found in many mammalian tissues including the heart, and able to differentiate into cardiomyocytes in vitro and in vivo. Our previous work indicated that heart-derived Sca-1+CD31− cells increased the Nr1d1 mRNA level of Nr1d1 with aging. However, how Nr1d1 affects the senescence of Sca-1+CD31− cells. Methods: Overexpression and knockdown of Nr1d1 in Sca-1+CD31− cells and mouse cardiac myocyte (MCM) cell lines were performed by lentiviral transduction. The effects of Nr1d1 abundance on cell differentiation, proliferation, apoptosis, cell cycle, and transcriptomics were evaluated. Moreover, binding of Nr1d1 to the promoter region of Nr4a3 and Serpina3 was examined by a luciferase reporter assay. Results and Conclusions: Upregulation Nr1d1 in young Sca-1+CD31− cells inhibited cell proliferation and promoted apoptosis. However, depletion of Nr1d1 in aged Sca-1+CD31− cells promoted cell proliferation and inhibited apoptosis. Furthermore, Nr1d1 was negatively associated with cell proliferation, promoting apoptosis and senescence-associated beta-galactosidase production in MCMs. Our findings show that Nr1d1 stimulates Serpina3 expression through its interaction with Nr4a3. Nr1d1 may therefore act as a potent anti-aging receptor that can be a therapeutic target for aging-related diseases

    Poly[[tris­[μ-2,2′-(butane-1,4-diyl­dithio)bis­(1,3,4-thia­diazole)-κ2 N 4:N 4′]copper(II)] bis­(perchlorate)]

    Get PDF
    In the title compound, {[Cu(C8H10N4S4)3](ClO4)2}n, the CuII atom is located on a threefold inversion axis coordinated by six N atoms of symmetry-equivalent 2,2′-(butane-1,4-diyl­dithio)bis­(1,3,4-thia­diazole) ligands in a slightly distorted octa­hedral geometry. Adjacent CuII atoms are linked by the bridging bidentate thia­diazole ligands, which are situated about inversion centers. This leads to the formation of a three-dimensional network structure
    corecore