28,152 research outputs found
Combining Stream Mining and Neural Networks for Short Term Delay Prediction
The systems monitoring the location of public transport vehicles rely on
wireless transmission. The location readings from GPS-based devices are
received with some latency caused by periodical data transmission and temporal
problems preventing data transmission. This negatively affects identification
of delayed vehicles. The primary objective of the work is to propose short term
hybrid delay prediction method. The method relies on adaptive selection of
Hoeffding trees, being stream classification technique and multilayer
perceptrons. In this way, the hybrid method proposed in this study provides
anytime predictions and eliminates the need to collect extensive training data
before any predictions can be made. Moreover, the use of neural networks
increases the accuracy of the predictions compared with the use of Hoeffding
trees only
Gauge invariant dressed holon and spinon in doped cuprates
We develop a partial charge-spin separation fermion-spin theory implemented
the gauge invariant dressed holon and spinon. In this novel approach, the
physical electron is decoupled as the gauge invariant dressed holon and spinon,
with the dressed holon behaviors like a spinful fermion, and represents the
charge degree of freedom together with the phase part of the spin degree of
freedom, while the dressed spinon is a hard-core boson, and represents the
amplitude part of the spin degree of freedom, then the electron single
occupancy local constraint is satisfied. Within this approach, the charge
transport and spin response of the underdoped cuprates is studied. It is shown
that the charge transport is mainly governed by the scattering from the dressed
holons due to the dressed spinon fluctuation, while the scattering from the
dressed spinons due to the dressed holon fluctuation dominates the spin
response.Comment: 8 pages, Revtex, three figures are include
CFD for Better Understanding of Wind Tunnel Tests
In this paper, we discuss how CFD may be used for better understanding of wind tunnel tests. Three examples are used to illustrate the potential use of CFD to help the understanding of phenomena observed in the wind tunnel tests, to extend/derive simple aerodynamic criteria based on CFD, and to use CFD to improve the accuracy of wind tunnel measurements
Critical behaviour of a spin-tube model in a magnetic field
We show that the low-energy physics of the spin-tube model in presence of a
critical magnetic field can be described by a broken SU(3) spin chain. Using
the Lieb-Schultz-Mattis Theorem we characterize the possible magnetization
plateaus and study the critical behavior in the region of transition between
the plateaus m=1/2 and m=3/2 by means of renormalization group calculations
performed on the bosonized effective continuum field theory. We show that in
certain regions of the parameter space of the effective theory the system
remains gapless, and we compute the spin-spin correlation functions in these
regions. We also discuss the possibility of a plateau at m=1, and show that
although there exists in the continuum theory a term that might cause the
appearance of a plateau there, such term is unlikely to be relevant. This
conjecture is proved by DMRG techniques. The modifications of the three-leg
ladder Hamiltonian that might show plateaus at m =1,5/6,7/6 are discussed, and
we give the expected form of correlation functions on the m=1 plateau.Comment: RevTeX, 43 pages, 5 EPS figure
A Comparative Study of Two Upwind Schemes as Applied to Navier-Stokes Solutions for Resolving Boundary Layers in Hypersonic Viscous Flow. G.U. Aero Report 9120
Van Leer's flux vector splitting scheme and Osher's flux difference splitting scheme are
compared for solving the Navier-Stokes equations governing the hypersonic viscous
flow. The effects of the grid number, the grid stretching, and the strength of the hmiter on
the solution are studied for both of the schemes. Sensitivity of the results to these
parameters are then compared for the two schemes
A pQCD-based description of heavy and light flavor jet quenching
We present a successful description of the medium modification of light and
heavy flavor jets within a perturbative QCD (pQCD) based approach. Only the
couplings involving hard partons are assumed to be weak. The effect of the
medium on a hard parton, per unit time, is encoded in terms of three
non-perturbative, related transport coefficients which describe the transverse
momentum squared gained, the elastic energy loss and diffusion in elastic
energy transfer. A fit of the centrality dependence of the suppression and the
azimuthal anisotropy of leading hadrons tends to favor somewhat larger
transport coefficients for heavy quarks. Imposing additional constraints based
on leading order (LO) Hard Thermal Loop (HTL) effective theory, leads to a
worsening of the fit.Comment: v2, 4 pages, 3 figure
Performance comparison between planar and pyramidal microdiffuser for valveless micropump
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.The microdiffuser is the most important component of the valveless micropump and its design plays a role in the valveless micropump performance to direct the flow in a proper direction. A planar microdiffuser valveless micropump has been compared with a pyramidal microdiffuser valveless micropump using 3-D CFD simulations. Both planar and pyramidal microdiffuser has a throat hydraulic diameter of 0.6865mm and diffuser half angle of 6.65 degrees. The dynamic mesh was applied under different actuation frequency of the micropump diaphragm (8, 50, 100, 200, 500, 1000, and 2000Hz). The net flow rate and the rectification efficiency were calculated for the two valveless micropumps. The results showed that the pyramidal microdiffuser performance was better than the planar microdiffuser for frequency f ≥ 200Hz as the net flow rate generated by pyramidal microdiffuser was higher than that by planar microdiffuser. The highest net flow rate of 18.3μL/min was achieved by the pyramidal microdiffuser at rectification efficiency of 0.35% and actuation frequency of 2000Hz
- …