874 research outputs found
Testing an injection forging process for the production of automotive fasteners
Competition in the automotive fasteners production has been fierce and there are needs for higher quality, lower manufacturing-cost and fast delivery. To meet such needs, injection forging of automotive fasteners for possible industrial production has been investigated, considering its potential of forming complex-shaped components with shorter process chains. Initially, a comparison study on existing multi-stage forming and injection forging was conducted, supported by FE simulations, through which the feasibility of using injection forging for producing one type of fasteners was established preliminarily. The process was then tested through forming experiments based on which component accuracy, formed-material hardness and grain-flow lines were examined to evaluate the quality of the fasteners formed. Further, a manufacturing trial was carried out in the industry to examine the process feasibility in the industrial environment. Besides the parts with good quality having been achieved, the requirement for higher forming-force and the consequence as larger die-deflections were also identified through these studies. Based on the results obtained, improvements on the process and tool-design were proposed, focusing on the forming-force reduction and higher part-dimension accuracy
A forging method for reducing process steps in the forming of automotive fasteners
The automotive component manufacturing sector is experiencing fierce competitions. To enable improvements in production efficiency, the authors introduced single step injection forging as an alternative to conventional multisteps forging processes for manufacturing automobile fasteners, being enabled by a dedicated tool-design to achieve combined material-flows and hence, a complex component-form. To assist in this, a feasibility study was conducted, including comparisons of conventional multisteps forging with injection forging, through FE simulations, experimental validation of the injection forging process, as well as detailed examinations of the quality of the parts formed. The simulations were focused mainly on the forming of a wheel bolt. Axi-symmetric models were developed to analyse forging force and energy requirements, resulting forming-errors and tool stresses for each process. Injection forging tests were carried out in a factory environment with the aim of verifying the FE results and of confirming process and tool-design feasibility. Based on the results from these studies, the feasibility of replacing multisteps forging with injection forging was confirmed. It was established that injection forging may demand higher a forming force in its single step but it would consume less energy. Also, there is less chance of developing flow faults during injection forging, which is critical for the forming of the automotive fasteners. Nevertheless, due to the complex material-flow in injection forging and large die-deflections, a dedicated tool-design for compensating for forming-errors and for enhancing tool-life has to be enabled for the forging production applications
Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy
© The Minerals, Metals & Materials Society and ASM International 2012The twin screw rheo-extrusion (TSRE) is designed to take advantage of the nondendritc microstructure and thixotropic characterization of semisolid-metal slurries and produce simple metal profiles directly from melts. The extrusion equipment consists of a rotor-stator high shear slurry maker, a twin screw extruder, and a die assembly. The process is continuous and has a potential for significantly saving energy, manufacturing cost, and enhancing efficiency. The present investigation was carried out to study the process performance for processing rods of an AZ91D magnesium alloy and the microstructure evolution during processing. The semisolid slurry prepared by the process was characterized by uniformly distributed nondendritic granular primary phase particles. AZ91D rods with uniform and fine microstructures and moderate mechanical properties were produced. For the given slurry making parameters, decreasing extrusion temperature was found to improve microstructures and properties. The mechanisms of particle granulation and refinement and the effect of processing parameters on process performance and thermal management are discussed. © 2012 The Minerals, Metals & Materials Society and ASM International.EPSRC (UK) and Rautomead Lt
When things matter: A survey on data-centric Internet of Things
With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, but several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy and continuous. This paper reviews the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed
Microstructure and interfacial reactions during active metal brazing of stainless steel to titanium
Microstructural evolution and interfacial reactions during active metal vacuum brazing of Ti (grade-2) and stainless steel (SS 304L) using a Ag-based alloy containing Cu, Ti, and Al was investigated. A Ni-depleted solid solution layer and a discontinuous layer of (Ni,Fe)2TiAl intermetallic compound formed on the SS surface and adjacent to the SS-braze alloy interface, respectively. Three parallel contiguous layers of intermetallic compounds, CuTi, AgTi, and (Ag,Cu)Ti2, formed at the Ti-braze alloy interface. The diffusion path for the reaction at this interface was established. Transmission electron microscopy revealed formation of nanocrystals of Ag-Cu alloy of size ranging between 20 and 30 nm in the unreacted braze alloy layer. The interdiffusion zone of β-Ti(Ag,Cu) solid solution, formed on the Ti side of the joint, showed eutectoid decomposition to lamellar colonies of α-Ti and internally twinned (Cu,Ag)Ti2 inter- metallic phase, with an orientation relationship between the two. Bend tests indicated that the failure in the joints occurred by formation and propagation of the crack mostly along the Ti- braze alloy interface, through the (Ag,Cu)Ti2 phase layer
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar
The branching ratios and Angular distributions for J/psi decays to Lambda
Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta
Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector,
the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are
measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and
(7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
- …