15 research outputs found

    The gut microbiota–brain axis in neurological disorder

    Get PDF
    The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders

    Flexible magnetoelectric transducer with high magnetic field sensitivity based on Metglas/poly(vinylidene fluoride) heterostructures

    No full text
    In this paper, the flexible magnetoelectric (ME) transducer consisting of FeSiB (Metglas)/poly(vinylidene fluoride) (PVDF) is presented, whose ME coupling characteristics and ME sensing performance under different bend status have been investigated. It is found that an appropriate size of transducers is propitious to the ME coupling characteristics due to the demagnetization effect. In addition, with increase the bending angle (θ) of transducers from 0° to 50°, the magnetoelectric voltage coefficient (MEVC) shows a reduction from 240.42 to 26.44 V/cm·Oe and 13.1 to 2.11 V/cm·Oe, at the resonance and low-frequency (1 kHz), respectively. Meanwhile, the induced ME voltage have an excellent linear relationship to ac magnetic field. An ultrahigh magnetic field sensitivity of 1.22 V/Oe and 0.11 V/Oe have been found under θ = 0° and 50°, respectively, which are positively comparable to the highest reported in the most recent polymer-based ME transducers. Moreover, the transducers can maintain the MEVC stable after an additionally bending cycles up to 1000 times, indicating the full flexibility and high stability of the mentioned transducers. Obviously, it demonstrates that the proposed FeSiB/PVDF transducers have great potential of being applied to wearable devices

    An integrated multi-source energy harvester based on vibration and magnetic field energy

    No full text
    In this paper, an integrated multi-source energy harvester (IMSEH) employing a special shaped cantilever beam and a piezoelectric transducer to convert vibration and magnetic field energy into electrical energy is presented. The electric output performance of the proposed IMSEH has been investigated. Compared to a traditional multi-source energy harvester (MSEH) or single source energy harvester (SSEH), the proposed IMSEH can simultaneously harvest vibration and magnetic field energy with an integrated structure and the electric output is greatly improved. When other conditions keep identical, the IMSEH can obtain high voltage of 12.8V. Remarkably, the proposed IMSEHs have great potential for its application in wireless sensor network

    Durability of direct-internally reformed simulated coke oven gas in an anode-supported planar solid oxide fuel cell based on double-sided cathodes

    No full text
    A simulated coke oven gas (COG) is used as internally-reformed (IR) fuel in an anode of solid oxide fuel cell based on double-sided cathodes (DSC-SOFC) and the durability of the cell is studied. The DSC-SOFC operates stably for over 240 h when the steam to methane (H2O/CH4) ratio is above 3 with performance degradation of about 0.01% per hour, but it has a larger degradation of about 0.08% per hour when the H2O/CH4 ratio is lower than 2.5. The mechanism of the cell degradation has been analyzed in detail. It is found that the H2O/CH4 ratio approximately equal to 1 is the key point affecting cell performance. The results of cell analysis by energy dispersive spectroscopy and Raman spectroscopy indicate that carbon deposition mainly takes place at the inlet and at the middle of DSC-SOFC. Due to thick anode substrate in this type of cell, carbon distribution on the cross-section reveals that there are two carbon producing areas, one close to the anode surface, and the other near the three-phase boundary. Some of the deposited carbon can be carried by the fuel gas to exhaust which lowers the actual carbon amount in the cell, thus prolonging the cell operation

    SARS-CoV-2 spike-specific TFH cells exhibit unique responses in infected and vaccinated individuals

    No full text
    Abstract Long-term humoral immunity to SARS-CoV-2 is essential for preventing reinfection. The production of neutralizing antibody (nAb) and B cell differentiation are tightly regulated by T follicular help (TFH) cells. However, the longevity and functional role of TFH cell subsets in COVID-19 convalescents and vaccine recipients remain poorly defined. Here, we show that SARS-CoV-2 infection and inactivated vaccine elicited both spike-specific CXCR3+ TFH cell and CXCR3− TFH cell responses, which showed distinct response patterns. Spike-specific CXCR3+ TFH cells exhibit a dominant and more durable response than CXCR3− TFH cells that positively correlated with antibody responses. A third booster dose preferentially expands the spike-specific CXCR3+ TFH cell subset induced by two doses of inactivated vaccine, contributing to antibody maturation and potency. Functionally, spike-specific CXCR3+ TFH cells have a greater ability to induce spike-specific antibody secreting cells (ASCs) differentiation compared to spike-specific CXCR3− TFH cells. In conclusion, the persistent and functional role of spike-specific CXCR3+ TFH cells following SARS-CoV-2 infection and vaccination may play an important role in antibody maintenance and recall response, thereby conferring long-term protection. The findings from this study will inform the development of SARS-CoV-2 vaccines aiming to induce long-term protective immune memory
    corecore