52 research outputs found

    Federated Generalization via Information-Theoretic Distribution Diversification

    Full text link
    Federated Learning (FL) has surged in prominence due to its capability of collaborative model training without direct data sharing. However, the vast disparity in local data distributions among clients, often termed the non-Independent Identically Distributed (non-IID) challenge, poses a significant hurdle to FL's generalization efficacy. The scenario becomes even more complex when not all clients participate in the training process, a common occurrence due to unstable network connections or limited computational capacities. This can greatly complicate the assessment of the trained models' generalization abilities. While a plethora of recent studies has centered on the generalization gap pertaining to unseen data from participating clients with diverse distributions, the divergence between the training distributions of participating clients and the testing distributions of non-participating ones has been largely overlooked. In response, our paper unveils an information-theoretic generalization framework for FL. Specifically, it quantifies generalization errors by evaluating the information entropy of local distributions and discerning discrepancies across these distributions. Inspired by our deduced generalization bounds, we introduce a weighted aggregation approach and a duo of client selection strategies. These innovations aim to bolster FL's generalization prowess by encompassing a more varied set of client data distributions. Our extensive empirical evaluations reaffirm the potency of our proposed methods, aligning seamlessly with our theoretical construct

    Advances in Atomic Time Scale imaging with a Fine Intrinsic Spatial Resolution

    Full text link
    Atomic time scale imaging, opening a new era for studying dynamics in microcosmos, is presently attracting immense research interesting on the global level due to its powerful ability. On the atom level, physics, chemistry, and biology are identical for researching atom motion and atomic state change. The light possesses twoness, the information carrier and the research resource. The most fundamental principle of this imaging is that light records the event modulated light field by itself, so called all optical imaging. This paper can answer what is the essential standard to develop and evaluate atomic time scale imaging, what is the optimal imaging system, and what are the typical techniques to implement this imaging, up to now. At present, the best record in the experiment, made by multistage optical parametric amplification (MOPA), is realizing 50 fs resolved optical imaging with a spatial resolution of ~83 lp/mm at an effective framing rate of 10^13 fps for recording an ultrafast optical lattice with its rotating speed up to 10^13 rad/s

    LLM-Rec: Personalized Recommendation via Prompting Large Language Models

    Full text link
    We investigate various prompting strategies for enhancing personalized recommendation performance with large language models (LLMs) through input augmentation. Our proposed approach, termed LLM-Rec, encompasses four distinct prompting strategies: (1) basic prompting, (2) recommendation-driven prompting, (3) engagement-guided prompting, and (4) recommendation-driven + engagement-guided prompting. Our empirical experiments show that incorporating the augmented input text generated by LLM leads to improved recommendation performance. Recommendation-driven and engagement-guided prompting strategies are found to elicit LLM's understanding of global and local item characteristics. This finding highlights the importance of leveraging diverse prompts and input augmentation techniques to enhance the recommendation capabilities with LLMs

    Chemisorption Induced Formation of Biphenylene Dimer on Surfaces

    Full text link
    We report an example that demonstrates the clear interdependence between surface-supported reactions and molecular adsorption configurations. Two biphenyl-based molecules with two and four bromine substituents, i.e. 2,2-dibromo-biphenyl (DBBP) and 2,2,6,6-tetrabromo-1,1-biphenyl (TBBP), show completely different reaction pathways on a Ag(111) surface, leading to the selective formation of dibenzo[e,l]pyrene and biphenylene dimer, respectively. By combining low-temperature scanning tunneling microscopy, synchrotron radiation photoemission spectroscopy, and density functional theory calculations, we unravel the underlying reaction mechanism. After debromination, a bi-radical biphenyl can be stabilized by surface Ag adatoms, while a four-radical biphenyl undergoes spontaneous intramolecular annulation due to its extreme instability on Ag(111). Such different chemisorption-induced precursor states between DBBP and TBBP consequently lead to different reaction pathways after further annealing. In addition, using bond-resolving scanning tunneling microscopy and scanning tunneling spectroscopy, we determine the bond length alternation of biphenylene dimer product with atomic precision, which contains four-, six-, and eight-membered rings. The four-membered ring units turn out to be radialene structures

    Chemisorption-induced formation of biphenylene dimer on Ag(111)

    Get PDF
    We report an example that demonstrates the clear interdependence between surface-supported reactions and molecular-adsorption configurations. Two biphenyl-based molecules with two and four bromine substituents, i.e., 2,2′-dibromobiphenyl (DBBP) and 2,2′,6,6′-tetrabromo-1,1′-biphenyl (TBBP), show completely different reaction pathways on a Ag(111) surface, leading to the selective formation of dibenzo[e,l]pyrene and biphenylene dimer, respectively. By combining low-temperature scanning tunneling microscopy, synchrotron radiation photoemission spectroscopy, and density functional theory calculations, we unravel the underlying reaction mechanism. After debromination, a biradical biphenyl can be stabilized by surface Ag adatoms, while a four-radical biphenyl undergoes spontaneous intramolecular annulation due to its extreme instability on Ag(111). Such different chemisorption-induced precursor states between DBBP and TBBP consequently lead to different reaction pathways after further annealing. In addition, using bond-resolving scanning tunneling microscopy and scanning tunneling spectroscopy, we determine with atomic precision the bond-length alternation of the biphenylene dimer product, which contains 4-, 6-, and 8-membered rings. The 4-membered ring units turn out to be radialene structures.This work was financially supported by the National Natural Science Foundation of China (21773222, 51772285, 21872131, U1732272, and U1932214), the National Key R&D Program of China (2017YFA0403402, 2017YFA0403403, and 2019YFA0405601), and Users with Excellence Program of Hefei Science Center CAS (2020HSC-UE004). The work at Washington State University was primarily funded through the National Science Foundation CAREER program under Contract no. CBET-1653561. This work was also partially funded by the Joint Center for Deployment and Research in Earth Abundant Materials (JCDREAM) in Washington State. Most of the computational resources were provided by the Kamiak HPC under the Center for Institutional Research Computing at Washington State University. This research also used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract no. DE-AC02-05CH11231. The work at Donostia International Physics Center was primarily funded through the Juan de la Cierva Grant (no. FJC2019-041202-I) from Spanish Ministry of Economy and Competitiveness, the European Union’s Horizon 2020 Research and Innovation program (Marie Skłodowska-Curie Actions Individual Fellowship (no. 101022150), and the MCIN/AEI/ 10.13039/501100011033 (Grant no. PID2019-107338RB-C63).Peer reviewe
    • …
    corecore