23 research outputs found

    Atomic Structure Evolution of Pt–Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals

    Get PDF
    Due to their exceptional catalytic properties for the oxygen reduction reaction (ORR) and other crucial electrochemical reactions, PtCo intermetallic nanoparticle (NP) and single atomic (SA) Pt metal site catalysts have received considerable attention. However, their formation mechanisms at the atomic level during high-temperature annealing processes remain elusive. Here, the thermally driven structure evolution of Pt–Co binary catalyst systems is investigated using advanced in situ electron microscopy, including PtCo intermetallic alloys and single Pt/Co metal sites. The pre-doping of CoN4 sites in carbon supports and the initial Pt NP sizes play essential roles in forming either Pt3Co intermetallics or single Pt/Co metal sites. Importantly, the initial Pt NP loadings against the carbon support are critical to whether alloying to L12-ordered Pt3Co NPs or atomizing to SA Pt sites at high temperatures. High Pt NP loadings (e.g., 20%) tend to lead to the formation of highly ordered Pt3Co intermetallic NPs with excellent activity and enhanced stability toward the ORR. In contrast, at a relatively low Pt loading (<6 wt%), the formation of single Pt sites in the form of PtC3N is thermodynamically favorable, in which a synergy between the PtC3N and the CoN4 sites could enhance the catalytic activity for the ORR, but showing insufficient stability

    Predictability of the Strong Ural blocking Event in January 2012 in the Subseasonal to Seasonal Models of Europe and Canada

    No full text
    The occurrence of a Ural blocking (UB) event is an important precursor of severe cold air outbreaks in Siberia and East Asia, and thus is significant to accurately predict UB events. Using subseasonal to seasonal (S2S) models of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Environment and Climate Change Canada (ECCC), we evaluated the predictability of a persistent UB event on 18 to 26 January 2012. Results showed that the ECCC model was superior to the ECMWF model in predicting the development stage of the UB event ten days in advance, while the ECMWF model had better predictions than the ECCC model for more than ten days in advance and the decaying stage of the UB event. By comparing the dynamic and thermodynamic evolution of the UB event predicted by the two models via the geostrophic vorticity tendency equation and temperature tendency equation, we found that the ECCC model better predicted the vertical vorticity advection, ageostrophic vorticity tendency, the tilting effect, horizontal temperature advection, and adiabatic heating during the development stage, whereas the ECMWF model better predicted the three dynamic and the two thermodynamic terms during the decaying stage. In addition, during both the development and decaying stages, the two models were good (bad) at predicting the vortex stretching term (horizontal vorticity advection), with the PCC between both the predictions and the observations larger (smaller) than +0.70 (+0.10) Thus, we suggest that the prediction of the persistent UB event in the S2S model might be improved by the better prediction of the horizontal vorticity advection

    Highly Enantioselective Organocatalytic α‑Sulfenylation of Azlactones

    No full text
    The first asymmetric α-sulfenylation of azlactones with <i>N</i>-(sulfanyl)­succinimides has been developed by using <i>cinchona</i> alkaloid-derived squaramide as a catalyst and 4 Å molecular sieves as an additive. The reaction conditions were suitable to 4-alkyl and benzyl-substituted azlactones as well as <i>N</i>-(benzyl/alkyl/arylthio)­succinimides, affording adducts with high enantioselectivities (81–94% ee)

    Spatiotemporal Characteristics of Freeze-Thawing Erosion in the Source Regions of the Chin-Sha, Ya-Lung and Lantsang Rivers on the Basis of GIS

    No full text
    Freeze-thawing erosion is mainly distributed in the tundra, which is one of the main factors affecting soil erosion and soil conservation and affects the economic development of relevant countries and regions. The study area was selected to the north of Tanggula Mountain and the south of Bayankera Mountain, to the east of The Qinghai-Tibet Plateau, as the headwaters of the Yangtze River and lancang River. The topography and climate were particularly prone to soil freeze-thawing erosion, and the ecological damage would seriously affect the production and life of people in the whole downstream area. Therefore, based on the analytic hierarchy process (AHP), this paper selects seven evaluation factors to analyze the temporal and spatial characteristics of freeze-thaw erosion in the study area and establishes a comprehensive weight evaluation model for freeze-thaw erosion. The results show that: (1) the evaluation model is effective, and the soil freeze-thawing erosion is strong in the whole research area; (2) the total area of the research area and the freeze-thawing erosion area are 418,843 km2 and 375,514 km2 respectively, the freeze-thawing erosion area accounting for 89.7% of the total research area, and the freeze-thawing erosion intensity ranged from 0.165 to 0.737; (3) the spatial distribution differs significantly, the freeze-thawing erosion intensity is mainly concentrated in high altitude areas, especially in the Tanggula Mountains; (4) slope, poor annual temperature, illumination, altitude and content of sand in soil accelerate soil freeze-thawing erosion, whereas vegetation index does not; wetness index enhanced the influence of vegetation coverage and sand content. (5) this research will provide scientific evidence for protection and restoration of ecological environment in the area

    Anthropogenic influence on Northern Hemisphere blocking during the winter 1960/1961–2012/2013

    No full text
    Atmospheric blocking (‘blocking’) in the Northern Hemisphere (NH) is a crucial driver of extreme cold spells in winter. Here we investigate the anthropogenic influence on the NH blocking and its impact on surface air temperature (SAT) during the winter 1960/1961–2012/2013 using two HadGEM3-GA6-N216 simulations with 15 ensemble members: (a) with anthropogenic and natural forcing (All-hist) and (b) with natural forcing only (Nat-hist). Compared to the Nat-hist run, the blocking frequency in the All-hist run decreases in the Euro-Atlantic, the Urals and the western Pacific, whereas it increases in the eastern Pacific and Greenland. These responses can be explained by the response of planetary waves and storm tracks. On the other hand, the decrease in SAT downstream of the blocking regions in the All-hist run is more pronounced than the Nat-hist run, especially in Europe and the Urals. Correspondingly, the proportion of cold days during all blocking days in these sectors is higher in the All-hist run than the Nat-hist run. These responses can be explained by the wind response associated with blocking. Overall, the spatiotemporal characteristics of blocking is crucial for evaluating the impact of blocking on extreme weather, and their response to anthropogenic forcing should be investigated by more models

    TEM and STEM Studies on the Cross-sectional Morphologies of Dual-/Tri-layer Broadband SiO2 Antireflective Films

    No full text
    Abstract Dual-layer and tri-layer broadband antireflective (AR) films with excellent transmittance were successfully fabricated using base-/acid-catalyzed mixed sols and propylene oxide (PO) modified silica sols. The sols and films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), transmission electron microscope (TEM), and scanning transmission electron microscope (STEM). FTIR and TEM results suggest that the PO molecules were covalently bonded to the silica particles and the bridge structure existing in PO modified silica sol is responsible for the low density of the top layer. The density ratio between different layers was measured by cross-sectional STEM, and the results are 1.69:1 and 2.1:1.7:1 from bottom-layer to top-layer for dual-layer and tri-layer films, respectively. The dual-layer film demonstrates good stability with 99.8% at the central wavelength of 351 nm and nearly 99.5% at the central wavelength of 1053 nm in laser system, and for the tri-layer AR film, the maximum transmittance reached nearly 100% at both the central wavelengths of 527 and 1053 nm

    Perceived Quality of Urban Wetland Parks: A Second-Order Factor Structure Equation Modeling

    Get PDF
    Wetland in the urban or peri-urban areas has been recognized as an important component of urban ecosystems and provides ecological and environmental services. Wetland park emerged as a kind of restoration of natural wetlands in the context of increasing pressure on land and eco-environment caused by urban sprawl, which has played an essential role in providing recreational spaces/opportunities and improving social interactions. However, little research has been conducted on the theoretical formulation elaborating individuals’ perceived quality of wetland parks when people are engaging in activities therein. This study is an attempt to develop a method to measure the quality of wetland parks based on individuals’ various perceptions and attitudes. From the view of human-nature interaction, the perceived quality is hypothetically conceptualized as a composite of two dimensions, such as comfort perception and environmental satisfaction. A series of questionnaire-based surveys were conducted among respondents (N = 936) in Yanghu wetland park in Changsha, China. Based on the measured items from on-site surveys, second-order factor structural equation modeling is applied to estimate the hypothesis of a hierarchical structure for elaborating how the quality of wetland park is perceived by individual respondents. The results test the hypothesis that the quality of wetland park as a second-order theoretical construct can be conceptualized by two first-order theoretical constructs, individuals’ comfort (loading = 0.749), and environmental satisfaction (loading = 0.828). In addition, a significant influence of attitudes toward green space on the perceived quality of wetland park has been identified

    Linkages of unprecedented 2022 Yangtze River Valley heatwaves to Pakistan flood and triple-dip La Niña

    No full text
    Abstract In July-August 2022, Yangtze River Valley (YRV) experienced unprecedented hot summer, with the number of heatwave days exceeding climatology by four standard deviations. The heatwaves and associated severe droughts affected about 38 million people and caused devastating economic losses of about five billion US dollars. Here we present convergent empirical and modelling evidence to show that the record-breaking Pakistan rainfall, along with the 2022 tripe-dip La Niña, produces anomalous high pressure over YRV, causing intense heatwaves. The La Niña-induced second-highest sea surface temperature gradient in the equatorial western Pacific suppresses western Pacific convection and extends the subtropical high westward. More importantly, the tremendous diabatic heating associated with the unprecedented Pakistan rainfall reinforces the downstream Rossby wave train, extending the upper-level South Asia High eastward and controlling the entire YRV. The overlay of the two high-pressure systems sustains sinking motion and increases solar radiation reaching the ground, causing recurrent heat waves
    corecore