139 research outputs found

    The Disability Burden Associated With Stroke Emerges Before Stroke Onset and Differentially Affects Blacks: Results From the Health and Retirement Study Cohort

    Get PDF
    Background. Few longitudinal studies compare changes in instrumental activities of daily living (IADLs) among stroke-free adults to prospectively document IADL changes among adults who experience a stroke. We contrast annual declines in IADL independence for older individuals who remain stroke-free to those for individuals who experienced a stroke. We also assess whether these patterns differ by sex, race, or Southern birthplace. Methods. Health and Retirement Study participants who were stroke-free in 1998 (n = 17,741) were followed through 2010 (average follow-up = 8.9 years) for self- or proxy-reported stroke. We used logistic regressions to compare annual changes in odds of self-reported independence in six IADLs among those who remained stroke-free throughout follow-up (n = 15,888), those who survived a stroke (n = 1,412), and those who had a stroke and did not survive to participate in another interview (n = 442). We present models adjusted for demographic and socioeconomic covariates and also stratified on sex, race, and Southern birthplace. Results. Compared with similar cohort members who remained stroke-free, participants who developed stroke had faster declines in IADL independence and a lower probability of IADL independence prior to the stroke. After a stroke, independence declined at an annual rate similar to those who did not have a stroke. The black-white disparity in IADL independence narrowed poststroke. Conclusion. Racial differences in IADL independence are apparent long before stroke onset. Poststroke differences in IADL independence largely reflect pre stroke disparities

    Masked Lip-Sync Prediction by Audio-Visual Contextual Exploitation in Transformers

    Full text link
    Previous studies have explored generating accurately lip-synced talking faces for arbitrary targets given audio conditions. However, most of them deform or generate the whole facial area, leading to non-realistic results. In this work, we delve into the formulation of altering only the mouth shapes of the target person. This requires masking a large percentage of the original image and seamlessly inpainting it with the aid of audio and reference frames. To this end, we propose the Audio-Visual Context-Aware Transformer (AV-CAT) framework, which produces accurate lip-sync with photo-realistic quality by predicting the masked mouth shapes. Our key insight is to exploit desired contextual information provided in audio and visual modalities thoroughly with delicately designed Transformers. Specifically, we propose a convolution-Transformer hybrid backbone and design an attention-based fusion strategy for filling the masked parts. It uniformly attends to the textural information on the unmasked regions and the reference frame. Then the semantic audio information is involved in enhancing the self-attention computation. Additionally, a refinement network with audio injection improves both image and lip-sync quality. Extensive experiments validate that our model can generate high-fidelity lip-synced results for arbitrary subjects.Comment: Accepted to SIGGRAPH Asia 2022 (Conference Proceedings). Project page: https://hangz-nju-cuhk.github.io/projects/AV-CA

    High-throughput discovery of chemical structure-polarity relationships combining automation and machine learning techniques

    Full text link
    As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties such as solubility and phase transition temperature. Thin layer chromatography (TLC) represents a commonly used technique for polarity measurement. However, current TLC analysis presents several problems, including the need for a large number of attempts to obtain suitable conditions, as well as irreproducibility due to non-standardization. Herein, we describe an automated experiment system for TLC analysis. This system is designed to conduct TLC analysis automatically, facilitating high-throughput experimentation by collecting large experimental data under standardized conditions. Using these datasets, machine learning (ML) methods are employed to construct surrogate models correlating organic compounds' structures and their polarity using retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds with high accuracy. Furthermore, the constitutive relationship between the compound and its polarity can also be discovered through these modeling methods, and the underlying mechanism is rationalized through adsorption theories. The trained ML models not only reduce the need for empirical optimization currently required for TLC analysis, but also provide general guidelines for the selection of conditions, making TLC an easily accessible tool for the broad scientific community

    Make Your Brief Stroke Real and Stereoscopic: 3D-Aware Simplified Sketch to Portrait Generation

    Full text link
    Creating the photo-realistic version of people sketched portraits is useful to various entertainment purposes. Existing studies only generate portraits in the 2D plane with fixed views, making the results less vivid. In this paper, we present Stereoscopic Simplified Sketch-to-Portrait (SSSP), which explores the possibility of creating Stereoscopic 3D-aware portraits from simple contour sketches by involving 3D generative models. Our key insight is to design sketch-aware constraints that can fully exploit the prior knowledge of a tri-plane-based 3D-aware generative model. Specifically, our designed region-aware volume rendering strategy and global consistency constraint further enhance detail correspondences during sketch encoding. Moreover, in order to facilitate the usage of layman users, we propose a Contour-to-Sketch module with vector quantized representations, so that easily drawn contours can directly guide the generation of 3D portraits. Extensive comparisons show that our method generates high-quality results that match the sketch. Our usability study verifies that our system is greatly preferred by user.Comment: Project Page on https://hangz-nju-cuhk.github.io

    Transition-Metal-Free Borylation of Alkyl Iodides via a Radical Mechanism

    Get PDF
    We describe an operationally simple transition-metal-free borylation of alkyl iodides. This method uses commercially available diboron reagents as the boron source and exhibits excellent functional group compatibility. Furthermore, a diverse range of primary and secondary alkyl iodides could be effectively transformed to the corresponding alkylboronates in excellent yield. Mechanistic investigations suggest that this borylation reaction proceeds through a single-electron transfer mechanism featuring the generation of an alkyl radical intermediate

    BNP facilitates NMB-encoded histaminergic itch via NPRC-NMBR crosstalk

    Get PDF
    Histamine-dependent and -independent itch is conveyed by parallel peripheral neural pathways that express gastrin-releasing peptide (GRP) and neuromedin B (NMB), respectively, to the spinal cord of mice. B-type natriuretic peptide (BNP) has been proposed to transmit both types of itch via its receptor NPRA encoded b

    A non-canonical retina-ipRGCs-SCN-PVT visual pathway for mediating contagious itch behavior

    Get PDF
    Contagious itch behavior informs conspecifics of adverse environment and is crucial for the survival of social animals. Gastrin-releasing peptide (GRP) and its receptor (GRPR) in the suprachiasmatic nucleus (SCN) of the hypothalamus mediates contagious itch behavior in mice. Here, we show that intrinsically photosensitive retina ganglion cells (ipRGCs) convey visual itch information, independently of melanopsin, from the retina to GRP neurons via PACAP-PAC1R signaling. Moreover, GRPR neurons relay itch information to the paraventricular nucleus of the thalamus (PVT). Surprisingly, neither the visual cortex nor superior colliculus is involved in contagious itch. In vivo calcium imaging and extracellular recordings reveal contagious itch-specific neural dynamics of GRPR neurons. Thus, we propose that the retina-ipRGC-SCN-PVT pathway constitutes a previously unknown visual pathway that probably evolved for motion vision that encodes salient environmental cues and enables animals to imitate behaviors of conspecifics as an anticipatory mechanism to cope with adverse conditions
    corecore