183 research outputs found

    Novel three-piston pump design for a slipper test rig

    Get PDF
    Slipper's micro motions including the squeezing motion, spinning motion, and tilting motion have a significant impact on its lubricating condition and dynamic behavior. However, few experimental studies are on these micro motions within a real axial piston pump, especially the slipper's spinning motion. The experimental investigations on the slipper in the past mainly focused on the parameters of the oil film such as pressure, thickness, and temperature. The sensors were often installed in the fixed swash plate when the cylinder block was chosen to rotate. Alternatively, the sensors were mounted in the fixed modified slipper when the swash plate rotated. The biggest challenge of the direct measurements of these micro motions is the space limitation for the sensor installation due to the compact structure of axial piston pumps as well as the slipper's macro motion. This paper presents a new three-piston pump for the slipper test rig which can provide enough installation space for the sensor. To realize the cylinder block balance, a hold-down plate is first introduced into this three-piston pump. In addition, a detailed set of relevant equations is derived to evaluate the functionality of the hold-down plate. Finally, the slipper's spinning motion was measured directly and continuously using this three-piston pump, which confirmed the capability of the slipper test rig

    Cloaking and imaging at the same time

    Full text link
    In this letter, we propose a conceptual device to perform subwavelength imaging with positive refraction. The key to this proposal is that a drain is no longer a must for some cases. What's more, this device is an isotropic omnidirectional cloak with a perfect electric conductor hiding region and shows versatile illusion optical effects. Numerical simulations are performed to verify the functionalities.Comment: 15 pages, 4 figure

    Long Noncoding RNA Expression Signatures of Metastatic Nasopharyngeal Carcinoma and Their Prognostic Value

    Get PDF
    Long noncoding RNAs (lncRNAs) have recently been found to play important roles in various cancer types. The elucidation of genome-wide lncRNA expression patterns in metastatic nasopharyngeal carcinoma (NPC) could reveal novel mechanisms underlying NPC carcinogenesis and progression. In this study, lncRNA expression profiling was performed on metastatic and primary NPC tumors, and the differentially expressed lncRNAs between these samples were identified. A total of 33,045 lncRNA probes were generated for our microarray based on authoritative data sources, including RefSeq, UCSC Knowngenes, Ensembl, and related literature. Using these probes, 8,088 lncRNAs were found to be significantly differentially expressed (2-fold). To identify the prognostic value of these differentially expressed lncRNAs, four lncRNAs (LOC84740, ENST00000498296, AL359062, and ENST00000438550) were selected; their expression levels were measured in an independent panel of 106 primary NPC samples via QPCR. Among these lncRNAs, ENST00000438550 expression was demonstrated to be significantly correlated with NPC disease progression. A survival analysis showed that a high expression level of ENST00000438550 was an independent indicator of disease progression in NPC patients (). In summary, this study may provide novel diagnostic and prognostic biomarkers for NPC, as well as a novel understanding of the mechanism underlying NPC metastasis and potential targets for future treatment
    corecore