10,522 research outputs found

    Thermodynamics of AdS Black Holes in Einstein-Scalar Gravity

    Get PDF
    We study the thermodynamics of nn-dimensional static asymptotically AdS black holes in Einstein gravity coupled to a scalar field with a potential admitting a stationary point with an AdS vacuum. Such black holes with non-trivial scalar hair can exist provided that the mass-squared of the scalar field is negative, and above the Breitenlohner-Freedman bound. We use the Wald procedure to derive the first law of thermodynamics for these black holes, showing how the scalar hair (or "charge") contributes non-trivially in the expression. We show in general that a black hole mass can be deduced by isolating an integrable contribution to the (non-integrable) variation of the Hamiltonian arising in the Wald construction, and that this is consistent with the mass calculated using the renormalised holographic stress tensor and also, in those cases where it is defined, with the mass calculated using the conformal method of Ashtekar, Magnon and Das. Similar arguments can also be given for the smooth solitonic solutions in these theories. Neither the black hole nor the soliton solutions can be constructed explicitly, and we carry out a numerical analysis to demonstrate their existence and to provide approximate checks on some of our thermodynamic results.Comment: 42 pages, 2 figures. Version published in JHEP, plus a "Note Added" expanding on our definition of "mass" via the first la

    The segment as the minimal planning unit in speech production and reading aloud: evidence and implications.

    Get PDF
    Speech production and reading aloud studies have much in common, especially the last stages involved in producing a response. We focus on the minimal planning unit (MPU) in articulation. Although most researchers now assume that the MPU is the syllable, we argue that it is at least as small as the segment based on negative response latencies (i.e., response initiation before presentation of the complete target) and longer initial segment durations in a reading aloud task where the initial segment is primed. We also discuss why such evidence was not found in earlier studies. Next, we rebut arguments that the segment cannot be the MPU by appealing to flexible planning scope whereby planning units of different sizes can be used due to individual differences, as well as stimulus and experimental design differences. We also discuss why negative response latencies do not arise in some situations and why anticipatory coarticulation does not preclude the segment MPU. Finally, we argue that the segment MPU is also important because it provides an alternative explanation of results implicated in the serial vs. parallel processing debate

    Quantum Transport and Integrability of the Anderson Model for a Quantum Dot with Multiple Leads

    Get PDF
    We show that an Anderson Hamiltonian describing a quantum dot connected to multiple leads is integrable. A general expression for the non-linear conductance is obtained by combining the Bethe ansatz exact solution with Landauer-B\"uttiker theory. In the Kondo regime, a closed form expression is given for the matrix conductance at zero temperature and when all the leads are close to the symmetric point. A bias-induced splitting of the Kondo resonance is possible for three or more leads. Specifically, for NN leads, with each at a different chemical potential, there can be N1N-1 Kondo peaks in the conductance.Comment: 5 pages, 2 figure

    On the Sojourn Time Distribution in a Finite Population Markovian Processor Sharing Queue

    Full text link
    We consider a finite population processor-sharing (PS) queue, with Markovian arrivals and an exponential server. Such a queue can model an interactive computer system consisting of a bank of terminals in series with a central processing unit (CPU). For systems with a large population NN and a commensurately rapid service rate, or infrequent arrivals, we obtain various asymptotic results. We analyze the conditional sojourn time distribution of a tagged customer, conditioned on the number nn of others in the system at the tagged customer's arrival instant, and also the unconditional distribution. The asymptotics are obtained by a combination of singular perturbation methods and spectral methods. We consider several space/time scales and parameter ranges, which lead to different asymptotic behaviors. We also identify precisely when the finite population model can be approximated by the standard infinite population M/M/1M/M/1-PS queue.Comment: 60 pages and 3 figure

    Exact solution at integrable coupling of a model for the Josephson effect between small metallic grains

    Full text link
    A model is introduced for two reduced BCS systems which are coupled through the transfer of Cooper pairs between the systems. The model may thus be used in the analysis of the Josephson effect arising from pair tunneling between two strongly coupled small metallic grains. At a particular coupling strength the model is integrable and explicit results are derived for the energy spectrum, conserved operators, integrals of motion, and wave function scalar products. It is also shown that form factors can be obtained for the calculation of correlation functions. Further, a connection with perturbed conformal field theory is made.Comment: 12 pages, latex, no figure

    Monte Carlo Algorithm for Simulating Reversible Aggregation of Multisite Particles

    Full text link
    We present an efficient and exact Monte Carlo algorithm to simulate reversible aggregation of particles with dedicated binding sites. This method introduces a novel data structure of dynamic bond tree to record clusters and sequences of bond formations. The algorithm achieves a constant time cost for processing cluster association and a cost between O(logM)\mathcal{O}(\log M) and O(M)\mathcal{O}(M) for processing bond dissociation in clusters with MM bonds. The algorithm is statistically exact and can reproduce results obtained by the standard method. We applied the method to simulate a trivalent ligand and a bivalent receptor clustering system and obtained an average scaling of O(M0.45)\mathcal{O}(M^{0.45}) for processing bond dissociation in acyclic aggregation, compared to a linear scaling with the cluster size in standard methods. The algorithm also demands substantially less memory than the conventional method.Comment: 8 pages, 3 figure

    Exact results for a tunnel-coupled pair of trapped Bose-Einstein condensates

    Full text link
    A model describing coherent quantum tunneling between two trapped Bose-Einstein condensates is shown to admit an exact solution. The spectrum is obtained by the algebraic Bethe ansatz. An asymptotic analysis of the Bethe ansatz equations leads us to explicit expressions for the energies of the ground and first excited states in the limit of {\it weak} tunneling and all energies for {\it strong} tunneling. The results are used to extract the asymptotic limits of the quantum fluctuations of the boson number difference between the two Bose-Einstein condensates and to characterize the degree of coherence in the system.Comment: 5 pages, RevTex, No figure
    corecore