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1 Introduction

The study of black hole thermodynamics has been one of the driving forces behind de-

velopments in general relativity and string theory in recent decades. These developments

include techniques based on constructing Noether charges for deriving the first law of ther-

modynamics [1–3], and the construction of black hole solutions in a wide variety of gravity

and supergravity theories. In this paper, we shall explore some subtleties arising in the

first law of thermodynamics for black holes in Einstein gravity coupled to a scalar field,

where there is a scalar potential that has a non-vanishing value at a stationary point.

Such potentials typically arise in gauged supergravity theories, leading to the existence of
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black hole solutions that are asymptotic to anti-de Sitter (AdS) spacetime. The focus of

our investigation will be the role of the parameter characterising the scalar “hair” in the

first law of thermodynamics. For convenience we shall often refer to this parameter as a

“scalar charge,” although strictly speaking it is not a conserved quantity in the usual sense.

Many properties of the scalar charges in asymptotic AdS backgrounds have been studied

in literature; see, for example, [4–10].

We shall consider an n-dimensional theory of gravity coupled to a scalar field φ, de-

scribed by the Lagrangian

L =
√
−g
(
R− 1

2
(∂φ)2 − V (φ)

)
. (1.1)

The potential V (φ) will be assumed to have a stationary point at φ = 0, such that V (0) is

negative and the theory admits an AdS vacuum solution. We shall look for static spherically

symmetric solutions that approach the AdS vacuum at large distance, with the ansatz

ds2 = −h(r)dt2 +
dr2

f(r)
+ r2dΩ2

n−2 , φ = φ(r) , (1.2)

where dΩ2
n−2 is the metric on the unit (n−2)-sphere. We shall consider two different kinds

of short-distance behaviour; either a black hole, for which h(r) vanishes at some radius

r = r0 (the outer horizon), or else a smooth soliton, where f(r) approaches 1 and h(r)

approaches a constant as r goes to zero.

Even for the static spherically symmetric ansatz that we are considering in this paper,

the equations of motion following from (1.1) are too complicated to admit explicit closed-

form solutions in general, and so the strategy for finding the black hole or soliton solutions

has to depend on numerical analysis and computer integration of the equations. A conve-

nient way to do this is first to obtain the general asymptotic forms of the scalar and metric

functions at large r, and then to use short-distance expansions valid near the horizon (or at

the origin, in the solitonic case) to set initial conditions for a numerical integration out to

large distance. If such a technique were applied to finding asymptotically flat black holes

with massive scalars, it would require a very delicate matching at large distance because the

asymptotic forms of the general large-r solutions would include terms with unacceptable

exponentially-growing behaviour. By contrast, in the asymptotically-AdS case the general

large-r solutions are all compatible with the AdS asymptotics, provided that the mass of

the scalar field lies in an appropriate range. This then means that having set initial condi-

tions for a black hole near the horizon, the scalar and metric functions essentially cannot

fail to integrate out to have acceptable large-r behaviour. Thus, while asymptotically-flat

black holes with massive scalar hair cannot arise (and indeed are ruled out by no-hair

theorems), asymptotically-AdS black holes, or solitons, with scalar hair are commonplace,

provided the mass of the scalar field lies in an appropriate range.

Later in the paper we shall study the near-horizon structure of the black-hole solutions.

For now, it suffices to record that the general such near-horizon solutions turn out to be

characterised by two non-trivial parameters, which may be thought of as the horizon radius

r0 and a scalar parameter φ0 = φ(r0) (the value of the scalar field on the horizon). On
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the other hand, the large-r solutions are characterised by three parameters, which we may

think of as a “mass parameter” α, which is the coefficient of the r−(n−3) term in the large-r

expansion of the metric function h(r),

h(r) = r2 `−2 + · · ·+ α

rn−3
+ · · · , (1.3)

and two coefficients, φ1 and φ2, characterising the leading-order terms in the two indepen-

dent solutions of φ(r) at large r. When we eventually match the near-horizon expansion to

the large-r expansion, the three parameters in the asymptotic expansion will be determined

as functions of the two non-trivial parameters of the near-horizon solution. Equivalently,

one may view two of the asymptotic parameters as being independent, with the third be-

ing determined in terms of these. Specifically, we shall refer to φ2, the coefficient of the

leading-order term in the faster-falling of the two scalar solutions, as the “scalar charge.”

For now, we may proceed by just considering the large-r expansion, since this is what

is needed in order to investigate the contribution of the scalar charge to the first law of

thermodynamics. We just need to bear in mind that eventually, the details of the black

hole solutions will impose one relation between the three parameters α, φ1 and φ2.

The situation is similar in the case of soliton solutions, except that now the general

short-distance solution has just the single non-trivial parameter φ0. This then implies that

ifor solitons there will be two relations among the three asymptotic parameters α, φ1 and φ2.

Our aims in this paper are to demonstrate the existence of the static spherically sym-

metric black holes and solitons with scalar hair; to derive a first law of black hole dynamics,

and to discuss the notion of an energy function, or “mass,” for the black hole solutions.

The first law of black hole dynamics for a spherically-symmetric black hole in pure Einstein

gravity takes the form dM = κdA/(8π), where κ is the surface gravity and A is the area of

the event horizon. As is well known, with the Hawking temperature being related to the

surface gravity by T = κ/(2π), and the Bekenstein-Hawking entropy given by S = A/4,

the first law of black hole dynamics becomes the first law of thermodynamics dM = TdS

for the spherically-symmetric black holes of pure Einstein gravity. In what follows, we

shall typically use the language and the variables of the thermodynamic first law in our

discussion, but it should be borne in mind that we are really just considering the purely

classical dynamics of the black hole solutions, with T meaning κ/(2π) and S meaning A/4.

To discuss the first law for the Einstein-Scalar black holes and solitons, we adopt a

general procedure described in [1–3]. This involves considering an infinitesimal variation

in a family of solutions admitting a timelike Killing vector, and deriving a closed (n −
2)-form whose integral δH over a bounding spacelike surface is therefore independent of

deformations of the surface. In particular, this means

δH∞ = δHH+ , (1.4)

where δH∞ is evaluated on the sphere at infinity and δHH+ is evaluated on the outer

horizon of the black hole.

In his discussions Wald has referred to two somewhat different possible viewpoints one

make take, in regard to the infinitesimal variations that one considers in the derivation.
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In the first of these, called the “physical states” viewpoint, one considers a variation that

results from an actual physical process under which the black hole evolves from an initial

to a nearby final stationary black hole solution. In the second approach, referred to as the

“equilibrium states” viewpoint, one simply considers the change that results from making

arbitrary infinitesimal variations of all the parameters characterising the solution space for

the black holes in the theory under consideration. We should stress at this point that in

all our discussions we shall be adopting the second, equilibrium states, viewpoint.

As we mentioned earlier, the spherically-symmetric static black hole solutions of the

Einstein-Scalar theories we are considering are characterised by two independent non-trivial

parameters, which we may think of as the mass parameter α and the scalar “charge”

parameter φ2. It is then of interest to seek a generalisation of the first law dM = TdS

of pure Einstein theory, for the two-parameter spherically-symmetric black holes of the

Einstein-Scalar theories. Such a first law would cerainly require more than just the term

TdS on the right-hand side, since one can easily verify, as we shall see later, that TdS by

itself is not an exact form in the parameter space of the solutions, if one considers general

infinitesimal variations of the two independent parameters in the black hole solutions.

For the static Einstein-scalar black holes we are considering in this paper, we find that

δHH+ = TδS , (1.5)

where T = κ/(2π) is the Hawking temperature and S = 1
4A, one quarter of the horizon

area, is the Bekenstein-Hawking entropy. At infinity we find that

δH∞ = δE + (c1φ2δφ1 − c2φ1δφ2) , (1.6)

where c1 and c2 are constants that are characteristic of the spacetime dimension and the

mass of the scalar field. Note that c2 6= −c1, and so the contribution (c1φ2δφ1 − c2φ1δφ2)
is not integrable (unless there is a functional relation of the form φ1 = φ1(φ2) between φ1
and φ2). The variation δE appearing in (1.6), on the other hand, is integrable; it takes

the form

δE =
ωn−2
16π

[
− (n− 2) δα+ δK(φ1, φ2)

]
, (1.7)

where ωn−2 is the volume of the unit (n− 2) sphere and K(φ1, φ2) is a calculable function

of φ1 and φ2 that depends on the spacetime dimension and the precise form of the scalar

potential V (φ) (including, in particular, the mass of the scalar field). Integrating (1.7) gives

E =
ωn−2
16π

[
− (n− 2)α+K(φ1, φ2)

]
. (1.8)

By writing δH∞ in the form (1.6), we have separated off its non-integrable portion,

which is bilinear in φi and δφj , and written the integrable remainder as the variation of the

function E given in (1.8). This decomposition is not unique, but the ambiguity is restricted

to the freedom to add a constant multiple of φ1 φ2 to K, leading to the redefined quantities

K ′ = K + λφ1 φ2 , c′1 = c1 −
ωn−2 λ

16π
, c′2 = c2 +

ωn−2 λ

16π
, (1.9)

and the associated redefinition of E, where λ is any constant.
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At this point we have obtained a function E that depends on the mass parameter α

and the scalar “charge” φ2 (with φ1 being a function of α and φ2.) Obviously E has the

dimensions of energy or mass, and so it is natural to enquire whether it is related to any

other known definition of a mass for an asymptotically-AdS black hole.

As we shall discuss in detail in this paper, the function E can in fact be associated

with the mass of the black hole, and so from (1.4), (1.5) and (1.6) we obtain the first law

of thermodynamics for the Einstein-Scalar black holes, in the form

dE = TdS − (c1φ2dφ1 − c2φ1dφ2) . (1.10)

Since all the quantities in (1.10) ultimately depend on the two non-trivial parameters α and

φ2 that characterise the black hole solutions, we can interpret the first law as a statement of

how the entropy changes under an infinitesimal variation of the mass and the scalar charge.

We could in fact take the calculation of E described above as a definition of the

mass, or energy, of the Einstein-Scalar black hole. The ambiguity associated with the

redefinition (1.9) corresponds to the freedom to make a Legendre transformation from one

type of energy variable to another, as one can always do for thermodynamic systems. (As,

for example, in the transformation from the internal energy U satisfying dU = TdS+ · · · to

the Gibbs free energy G = U −TS+ · · · satisfying dG = −SdT + · · · .) A unique definition

of the energy function is pinned down by specifying the precise form of the first law; for

example, by choosing λ so that c′1 = 0 in (1.9).

We can give a more concrete interpretation for the quantity E by using some indepen-

dent procedure to compute the mass of the black holes. We shall consider two methods

in this paper. The first, which seems to be the most reliable, is by using the AdS/CFT

correspondence to calculate the renormalised stress tensor Tαβ of the boundary conformal

field theory, and then interpreting the appropriate integral of T00 as the mass [11–15]. We

may also compute the mass using the AMD conformal procedure developed by Ashtekar,

Magnon and Das [16, 17], involving the integration of a certain electric component of the

Weyl tensor over the spherical boundary at infinity. This works well provided the metric

approaches AdS sufficiently rapidly, and we find for our solutions that the two approaches

yield consistent results under these circumstances.1

We shall see that the quantity E arising from the Wald derivation of the first law

of thermodynamics is in fact consistent with the mass calculated using the renormalised

holographic stress tensor. In certain cases there are ambiguities in the calculation of the

holographic mass, including the one alluded to previously. These ambiguities amount

to nothing more than the freedom to make a Legendre transformation from one energy

function to another.

The variation δH∞ in (1.6) is not integrable unless φ1 is a specific function of φ2
alone, whereas, by contrast, in the scalar black hole solutions φ1 is a function of φ2 and E.

This means that as one varies the two independent parameters φ2 and E one is effectively

1A recent discussion of the calculation of the AMD mass in the context of AdS black holes with scalar

hair can be found in [18]. See also [19] for the calculation of the AMD mass in a variety of charged rotating

AdS black holes in gauged supergravities.
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changing the boundary conditions on the scalar field at infinity. (We remind the reader that

we are adopting the “equilibrium states” viewpoint in our discussions, in which arbitrary

variations in the parameters in the solution are considered.) The non-integrability of δH∞
is symptomatic of the existence of a non-trivial symplectic flux at infinity [1, 2], which in

our case would be proportional to the second variation g2(δ(1)φ1 ∧ δ(2)φ2 − δ(2)φ1 ∧ δ(1)φ2)
in field space. This has the implication that there does not exist a universal Hamiltonian

H∞ for the entire class of scalar black hole solutions, and so one does not have an energy

function that is conserved for the entire class of solutions. Nonetheless, for any specific

solution we can define the boundary condition on the scalar field to be the one satisfied by

that particular black hole. The mass for this black hole can be calculated, without appeal

to a variational calculation of δH∞, via the computation of the holographic stress tensor.

By this means we can define a mass for each black hole in the two-parameter family that is

characterised by φ2 and E. Equation (1.4) then gives a mathematically valid statement of

how the entropy S(φ2, E) varies under infinitesimal changes in φ2 and E, regardless of the

fact that such changes will in general move the solution to a new configuration for which

the boundary condition on φ has altered.

It has been observed in previous discussions (see, for example, [8], and, more recently,

in [18]) that if one is considering the case of a solution where φ1 is determined as a function

of φ2 alone, then one can always integrate the full asymptotic quantity δH∞ in (1.6) and

take it as a definition of the mass. Indeed, one could do this for the solitonic solutions

of the Einstein-Scalar theory since, as we remarked above, the solutions are characterised

by the single non-trivial parameter φ0 at the origin, and therefore α, φ1 and φ2 in the

asymptotic solutions are all functions of just φ0, and hence for the solitons we can view

φ1 as a function of φ2.
2 However, it is important to stress that one cannot do this for the

black hole solutions, since now α, φ1 and φ2 are functions of the two non-trivial parameters

r0 and φ0 on the horizon. One can therefore view φ1 as a function of φ2 and α, but not

as a function of φ2 alone. Thus one cannot integrate the entire quantity δH∞ to obtain a

“mass” in this case. It is for this reason that we argued that one has to separate off the

non-integrable terms involving φ2δφ1 and φ1δφ2 in (1.6), and interpret only the integrable

remainder δE as the variation of a mass. In this viewpoint, the non-integrable terms must

then be interpreted as a distinct additional contribution in the first law of thermodynamics.

In other words, the solitonic solutions, where one could choose to integrate up the φ2δφ1
and φ1δφ2 terms and absorb them into a Legendre transformed energy function, are very

special, and not representative of the more general situation with black holes, where there

are independent mass and scalar charge parameters.

Some of the above considerations came rather strikingly to the fore recently, with the

construction of a dyonic charged black hole in a certain four-dimensional gauged supergrav-

2The mass defined in this way would, of course, depend upon the functional dependence of φ1 upon φ2

that followed as a consequence of the equations of motion in the interior. By contrast, the mass calculated

using the AMD proceedure or the holographic renormalised stress tensor depends only on certain coefficients

in the asymptotic expansions, in an algebraic and local fashion. How these coefficients are constrained by

the interior behaviour, be it a soliton (smooth), a black hole (with a horizon), or an object with naked

singularity, should not affect the definition of the mass.
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ity theory [20]. (See also [21].) This theory comprises Einstein-Scalar gravity coupled to a

Maxwell field, with a very specific scalar potential and scalar coupling to the Maxwell field.

The novelty of this solution lies in the fact that it is actually fully explicit and expressible

in closed form, and yet, it exhibits precisely the kind of phenomenon that we have dis-

cussed above, in which the scalar field contributes a non-trivial additional term in the first

law of thermodynamics. The black holes in [20] depend on three non-trivial parameters,

namely the mass M , the electric charge Q and the magnetic charge P . The asymptotic

scalar parameters φ1 and φ2 are specific functions of M , Q and P , and one cannot simply

integrate up the φ2δφ1 and φ1δφ2 terms in the first law [20]. The solutions in [20], which

are fully explicit, are not in fact the most general static spherically-symmetric black holes

in the theory; there will actually exist four-parameter solutions in which the scalar charge

can be independently specified. (These would be charged analogues of the Einstein-Scalar

black holes we are considering in this paper.) However, as with the simpler case of the

Einstein-Scalar system we are considering here, one cannot obtain the four-parameter black

hole solutions explicitly. They would, however, provide further examples where one could

not integrate up the contribution from the scalar charge in the variation δH∞.

It is instructive to compare the situation for black holes in the Einstein-Scalar system

to that for Reissner-Nordström black holes in the Einstein-Maxwell theory. A derivation

of the first law using the Wald formalism was presented in [22], for a gauge choice where

the vector potential A vanishes asymptotically at infinity. In this gauge, one has

δHH+ = TδS + ΦδQ , δH∞ = δM , (1.11)

and so δH∞ = δHH+ leads to the standard first law [22], and furthermore δH∞ is inte-

grable. In the context of the AdS/CFT correspondence, however, it is customary instead to

make a gauge choice for which A vanishes on the horizon, and consequently A0 ∼ Φ +Q/r

in the asymptotic region. In this gauge choice, Φ acquires a physical interpretation as a

chemical potential in the boundary field theory. We then have

δHH+ = TδS , δH∞ = δM − ΦδQ , (1.12)

with δH∞ = δHH+ again leading to the same first law. However, for this gauge choice

δH∞ is no longer integrable, just as we have seen in the case of Einstein-Scalar black holes.

The gauge choice where A vanishes on the horizon is also a more natural one if one views

the Maxwell field as a massless limiting case of a more general class of massive Proca fields,

since for the Einstein-Proca system the equations of motion imply that the Proca field A

must vanish on the horizon. (See [23] for a detailed discussion of the thermodynamics of

Einstein-Proca AdS black holes.)

The organisation of the rest of this paper is as follows. In section 2, we set up our

notation and conventions for the Einstein-Scalar theory, and we derive the equations for

motion for the fields in the static, spherically-symmetric, ansatz for black hole and soliton

solutions. Section 3 contains a derivation of the first law of thermodynamics for the black

holes and solitons, and also the derivation of their mass, using the holographic stress

tensor and also using the conformal procedure developed by Ashtekar, Magnon and Das.
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In section 4, we discuss the asymptotic forms of the solutions at large distance, focusing

especially on the case where the mass of the scalar field lies in a particular range for which

a generic discussion of the large-r expansions can easily be given. We also use the results

from section 3 to calculate the masses of the black holes for this class of solutions, and to

give an explicit derivation of the first law of thermodynamics.3 In section 5 we study a

variety of cases where the mass of the scalar field lies outside the generic range discussed in

section 4, in some of which additional complications or subtleties arise. In section 6 we turn

to a numerical study of the black hole and soliton solutions. This includes a derivation of

the inner expansions for the solutions near to the horizon or the origin respectively, which

we then use in order to set initial data for numerical integrations out to large distances.

We use some of the numerical results in order to obtain approximate confirmation of our

results for the first law.

2 Static solutions for Einstein-Scalar black holes

The equations of motion following from the Lagrangian (1.1) are

�φ =
∂V

∂φ
, Eµν ≡ Rµν −

1

2
∂µφ∂νφ−

1

n− 2
V gµν = 0 . (2.1)

The potential V (φ) will be assumed to have a stationary point at φ = 0, at which the

potential is some negative constant. It will be convenient to take

V (0) = −(n− 1)(n− 2)`−2 , (2.2)

which therefore implies that the anti-de Sitter spacetime

ds2 = −
(
g2r2 + 1

)
dt2 +

(
g2r2 + 1

)−1
dr2 + r2dΩ2

n−2 (2.3)

is a solution, where dΩ2
n−2 is the metric on the unit (n − 2)-sphere, and where the scalar

field φ is set to zero. Here, and in much of the remainder of the paper, it is convenient to

define the constant g (like a gauge-coupling constant in gauged supergravity) by

g =
1

`
. (2.4)

We shall assume that the scalar potential admits a Taylor expansion of the form

V = −(n− 1)(n− 2)g2 +
1

2
m2φ2 + γ3φ

3 + γ4φ
4 + · · · . (2.5)

The parameter m is the mass of the scalar field.

The linearised equation for the scalar field around the AdS background is (�−m2)φ =

0, for which the general static spherically-symmetric solution is

φ =
c1

r(n−1−σ)/2
2F1

[
1

4
(5− n− σ),

1

4
(n− 1− σ); 1− 1

2
σ;− `

2

r2

]
c2

r(n−1+σ)/2
2F1

[
1

4
(5− n+ σ),

1

4
(n− 1 + σ); 1 +

1

2
σ;− `

2

r2

]
, (2.6)

3Our focus throughout is on spherically-symmetric black holes in dimesions n ≥ 4. One could also

consider more general black holes, and black holes in three dimensional Einstein-Scalar theories, which

have been studied, for example, in [24].
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where

σ =
√

4`2m2 + (n− 1)2 . (2.7)

More general time-dependent modes will have real frequencies provided that σ is real, and

this implies that the modes are non-tachyonic provided that

m2 ≥ m2
BF = −1

4
(n− 1)2`−2 , (2.8)

where the (negative) mass-squared m2
BF is known as the Breitenlohner-Freedman bound.

The scalar fields in supergravity theories commonly have negative values of mass-squared,

lying within the allowed Breitenlohner-Freedman range.

As well as AdS itself, the theory described by (1.1) also admits black hole solutions,

such as Schwarzschild-AdS, for which the scalar field continues to vanish. However, we

may also consider more general black-hole solutions, where the scalar field is excited too.

We shall consider only static, spherically symmetric, black holes in this paper, for which

the metric and scalar field may be assumed to take the form (1.2). The non-vanishing

components of the Ricci tensor are given by

Rtt = hf

(
h′′

2h
− h′2

4h2
+
h′f ′

4hf
+

(n− 2)h′

2rh

)
,

Rrr = −h
′′

2h
+
h′2

4h2
− h′f ′

4hf
− (n− 2)f ′

2r2f
,

Rij =

(
(n− 3)− r(hf)′

2h
− (n− 3)f

)
g̃ij , (2.9)

where g̃ij is the metric on the unit (n−2)-sphere. The equations of motion implied by (2.1)

can be taken to be

h′′

h
− h′2

2h2
+
f ′h′

2fh
+

(n− 3)h′

rh
− f ′

rf
− 2(n− 3)(f − 1)

r2f
= 0 ,

φ′2 =
(n− 2)(fh′ − hf ′)

rfh
,

fh′′

h
− fh′2

2h2
+
f ′h′

2h
+

(n− 1)fh′

rh
+
f ′

r
+

2(n− 3)(f − 1)

r2
+

4V

n− 2
= 0 . (2.10)

Note that the first two equations, coming from Et
t − Eii = 0 and Et

t − Err = 0, do not

involve the potential V (φ).

3 Calculation of mass and the first law

3.1 Derivation of the first law

We adopt the general procedure developed by Wald [1] in order to derive the first law of

thermodynamics for the Einstein-Scalar black holes. Specifically, we shall follow rather

closely the derivation that was presented in [22] for obtaining the first law for the Einstein-

Maxwell system, adapting it appropriately for our Einstein-Scalar case. For further specific
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details of the derivation for Einstein gravity coupled to a scalar field, we refer to some earlier

work in [20] and [10]. The procedure involves considering the variation of the parameters

in an n-dimensional solution, and constructing a closed (n− 2)-form (δQ− iξΘ) where ξ is

any Killing vector. Taking ξ = ∂/∂t and applying this to the theory (1.1) with the static

solutions of the form (1.2), one finds that the integral of (δQ− iξΘ) over any Sn−2 surface

at constant t and r gives a quantity δH that is independent of r. Thus in particular we

have (1.4), where the two quantities are evaluated at infinity and on the outer horizon.

In detail, the Wald procedure [1] involves first writing the variation of a Lagrangian

n-form under a general diffeomorphism as δL = E(Φ) δΦ + dΘ(Φ, δΦ), where the fields

Φ transform as δΦ = LξΦ, and where Lξ is the Lie derivative with respect to the diffeo-

morphism parameter ξ, and E(Φ) = 0 are the equations of motion. Since one also has

δL = LξL, and Lξ = diξ + iξd, it follows that

Θ(Φ,LξΦ)− iξL = dQ , (3.1)

where Q is an (n− 2) form, and iξ acting on any p-form gives the (p− 1)-form obtained by

contraction with ξ. One now makes a variation of the parameters in the solution, giving

dδQ = δΘ− iξδL = δΘ− iξdΘ = δΘ− LξΘ + diξΘ , (3.2)

and then takes ξ to be a Killing vector, for which LξΘ = 0 and δΘ = δΘ(Φ,LξΦ) = 0

(since LξΦ = 0). Thus d(δQ− iξΘ)) = 0, implying that

δH ≡
∫

(δQ− iξΘ) (3.3)

is independent of deformations of the closed (n − 2)-dimensional surface over which it is

integrated. For the ansatz (1.2) in the Einstein-Scalar theory, and taking ξ to be the

timelike Killing vector ∂/∂t, one finds [10, 20]

Q =
1

16π
rn−2 h′

√
f

h
Ωn−2 ,

iξΘ =
1

16π
rn−2

[
δ

(
h′
√
f

h

)
+
n− 2

r

√
h

f
δf +

√
fhφ′δφ

]
Ωn−2 , (3.4)

where Ωn−2 is the volume form on the unit (n− 2)-sphere, and hence at radius r one has

δH = −ωn−2
16π

rn−2

√
h

f

[
n− 2

r
δf + f φ′ δφ

]
, (3.5)

where ωn−2 is the volume of the unit Sn−2. As we shall see below, δH∞ turns out to be

equal to be the variation δE of a function E of the independent asymptotic parameters of

the solution plus a non-integrable contribution involving the variation of the coefficients φ1
and φ2 in the asymptotic expansion of the scalar field. The function E has an interpretation

as the mass of the black hole. On the other hand, δH can be evaluated on the horizon by

considering the near-horizon form of the metric (1.2), for which we shall have

h(r) = (r − r0)h′(r0) + · · · , f(r) = (r − r0) f ′(r0) + · · · , (3.6)
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where r0 is the horizon radius. Thus δf |r=r0 = −δr0 f ′(r0) and so

δHH+ =
(n− 2)ωn−2

16π

√
f ′(r0)h′(r0) r

n−3
0 δr0 = TδS , (3.7)

since T = (4π)−1
√
f ′(r0)h′(r0) and (n − 2)ωn−2 r

n−3
0 δr0 = δ(rn−20 ωn−2) = δA = 4δS.

Thus (1.4) gives us the first law of thermodynamics for the Einstein-Scalar black holes.

3.2 Mass via the holographic stress tensor

The mass of the Einstein-Scalar black holes can be calculated using standard holographic

techniques. That is to say, we calculate the renormalised stress tensor Tαβ for the dual

boundary theory that is related to the bulk theory via the AdS/CFT correspondence. In-

tegrating the component T00 over the spatial Sn−2 boundary at infinity gives the mass of

the black hole. The renormalisation is achieved by adding appropriate boundary terms and

counterterms to the bulk action, and Tαβ is then obtained by evaluating the variation of

the total action with respect to the boundary metric. In general, the counterterms in the

gravitational sector will be certain invariant polynomials built from the boundary curvature

tensor and its covariant derivatives. The first few such terms, sufficient for renormalising

the stress tensor in some of the lower spacetime dimensions, can be found in the exten-

sive literature on the subject. In our case, since we are focusing our attention on static

and spherically-symmetric configurations, the contribution to T00 from the gravitational

counterterm at a given order, corresponding to a curvature polynomial of degree p, will

necessarily take the form of a constant coefficient divided by r2p. Each of these constant co-

efficients will have a universal (dimension-dependent) value, independent of the parameters

of the specific solution, which is uniquely determined by the requirement that it remove the

corresponding divergence in the stress tensor for the pure AdS background. This enables

us to perform the renormalisation in arbitrarily high dimensions without needing to know

the detailed and complicated expressions for the general curvature counterterms that arise

as one looks at higher dimensions.

The bulk Lagrangian, and the boundary and counterterms in the gravitational sector,

are given by [13–15]

Lbulk =
1

16πG

√
−g
[
R− 1

2
(∂φ)2 − (n− 1)`−2

]
, (3.8)

Lsurf = − 1

8πG

√
−hK , (3.9)

Lct =
1

16πG

√
−h
[
− 2(n− 2)

`
+

`

(n− 3)
R

+
`3

(n− 5)(n− 3)2

(
Rµν Rµν −

(n− 1)

4(n− 2)
R2

)
+ · · ·

]
, (3.10)

where K = hµνKµν is the trace of the second fundamental form Kµν = −∇(µnν), and

Rµνρσ and its contractions denote curvatures in the boundary metric hµν = gµν − nµnν .

The curvature-squared terms are needed for renormalisation only in dimensions n > 5. The

ellipses represent higher-order counterterms that would be needed in dimensions n > 7. As
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mentioned above, we can side-step the need for the explicit forms of these higher countert-

erms for our simple spherically-symmetric static metrics.

In the scalar sector, we can have boundary and counterterms

Lsurf [φ] =
γ

16πG

√
−hnµ φ∂µφ ,

Lct[φ] =
1

16πG

√
−h `−1

(
e1φ

2 + e2φ
3 + e3φ

4 + · · ·
)
. (3.11)

The coefficients ei in the counterterms may be chosen in order to cancel further divergences

in the holographic stress tensor that may arise. The constant γ in the boundary term is

typically a free parameter, which corresponds to the freedom to redefine the mass by means

of a Legendre transformation that adds some function of the asymptotic scalar expansion

coefficients. In certain cases where there is logarithmic r dependence in the asymptotic

expansions for the metric and scalar field, it is necessary to fix γ in order to remove

divergences in the holographic stress tensor.

Calculating the boundary stress tensor Tαβ = (2/
√
−h) δI/δhαβ, and substituting the

form of our metric ansatz, we find that4 the renormalised holographic T00 is obtained by

taking the r −→∞ limit of

T00 =
1

8πG

−(n− 2)h
√
f

r
+ (n− 2)h `−1

[(n−2)/2]∑
p=0

cp `
2p

r2p

−γ
√
f hφφ′ +

1

2
`−1 h

(
e1φ

2 + e2φ
3 + · · ·

) . (3.12)

Here the constants cp are the universal ones we mentioned previously that are determined

by requiring that there be no divergences in T00 for the pure AdS case. This implies that

cp =

(
1
2

p

)
=

(
1
2

)
!

p!
(
1
2 − p

)
!
, (3.13)

and so we can write

[(n−2)/2]∑
p=0

cp `
2p

r2p
=
`
√
f0
r
−

∞∑
p=[n/2]

cp `
2p

r2p
, f0 ≡ r2 `−2 + 1 . (3.14)

The holographic mass is obtained by integrating T00 over the (n−2) sphere at infinity,

and hence

M = lim
r→∞

rn−3 ` ωn−2 T00 . (3.15)

It therefore follows from (3.14) that the mass will be given by

M = lim
r→∞

rn−3 ωn−2
8π

[
−

(n− 2)
(√
f −
√
f0
)
h

r

− γ
√
f hφ′ φ+

1

2
`−1 h

(
e1φ

2 + e2φ
3 + · · ·

) ]
+ Ecasimir , (3.16)

4See section 3 of [23] for a a detailed discussion of a closely related calculation for Einstein-Proca black

holes in arbitrary dimensions.
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where the Casimir energy Ecasimir arises as an extra contribution from the leading p = [n/2]

term in the sum on the right-hand side in (3.14) in the case that n is odd. The Casimir

energy when n is odd, n = 2q + 1, is given by

Ecasimir = −(2q − 1)ω2q−1 `
2q−2

8π

(
1
2

q

)
. (3.17)

Since our concern in the present work is just with the classical mass of the black holes, we

shall drop the Casimir contribution from now on.

3.3 AMD derivation of the mass

Provided that a metric approaches AdS sufficiently rapidly, another convenient way of

calculating the mass is by using the conformal method developed by Ashtekar, Magnon

and Das [16, 17]. This method, sometimes referred to as the AMD procedure, involves

making a conformal rescaling of the metric to ḡµν = Ω2 gµν with Ω→ 0, n̄µ = ∂µΩ on the

boundary, with n̄µ being a spacelike unit vector orthogonal to the spatial boundary. The

AMD mass is then given by evaluating the integral

MAMD =
`

8π(n− 3)

∫
Sn−2

Ēµν ξν dΣ̄µ (3.18)

on the conformal boundary, where ξ = ∂/∂t,

Ēµν = n̄ρ n̄σ C̄µρνσ (3.19)

and C̄µρνσ is the Weyl tensor of the conformally-rescaled metric. In the case of static

metrics of the form (1.2), this amounts to evaluating

MAMD =
ωn−2

8π(n− 3)
rn−1C0

101

∣∣∣
r=∞

, (3.20)

where C0
101 is the trtr vielbein component of the Weyl tensor of the metric (1.2), which

is given by

C0
101 = −(n− 3)

(n− 1)

[
fh′′

2h
− fh′2

4h2
+
f ′h′

4h
− fh′

2rh
− f ′

2r
− 1− f2

r2

]
. (3.21)

(A detailed discussion of the relation between the holographic calculation and the AMD

calculation of the mass for Einstine-Scalar black holes appeared recently in [18].)

4 Asymptotics and thermodynamics for 0 < σ < 1

Since the black-hole metric will be asymptotic to AdS at large distances, it follows that

asymptotically the scalar field can include terms with the leading-order behaviours implied

by (2.6), namely

φ(r) ∼ φ1

r(n−1−σ)/2
+

φ2

r(n−1+σ)/2
+ · · · , (4.1)
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where φ1 and φ2 are constants. In the full non-linear theory, the scalar field will back-react

on the metric, and in turn the metric will back-react on the scalar field. The asymptotic

form of the full solutions can be found by making appropriate large-r expansions for the

functions φ(r), h(r) and f(r), substituting them into the equations of motion (2.10), and

solving for the coefficients in the expansions up to any desired order. For a general value of

the mass m of the scalar field it is quite complicated to set up the appropriate expansions,

because the orders at which the back-reaction terms arise will interlace with the orders at

which the original scalar field terms displayed in (4.1), and their descendants, will occur.

A relatively simple sub-class to consider is when the mass of the scalar field lies in the

range corresponding to 0 < σ < 1 (see (2.7)), namely

− 1

4
`−2 (n− 1)2 < m2 < −1

4
`−2

[
(n− 1)2 − 1

]
. (4.2)

(Note that σ = 1 corresponds to a conformally massless scalar, and it can arise in gauged

supergravities in four and six dimensions, but not in five and seven dimensions. The black

hole thermodynamics for σ = 1 was obtained in [10].) In this range, limited at the lower end

by the Breitenlohner-Freedman bound, the leading-order terms in the large-r expansions

will take the form

φ =
φ1

r(n−1−σ)/2
+

φ2

r(n−1+σ)/2
+ · · · ,

h = g2r2 + 1 +
α

rn−3
+ · · · ,

f = g2r2 + 1 +
b

rn−3−σ
+

β

rn−3
+ · · · . (4.3)

Note that the Schwarzschild-AdS black hole corresponds to

α = β , φ1 = φ2 = b = 0 , (4.4)

with all higher-order terms vanishing as well.

Substituting the expansions (4.3) into the equations of motion and solving for the first

few coefficients, we find that

b =
(n− 1− σ)φ21

4(n− 2)`2
, β = α+

[
(n− 1)2 − σ2

]
φ1φ2

2(n− 1)(n− 2)`2
. (4.5)

The expression (3.5) for δH, evaluated at infinity, then gives

δH∞ =
ωn−2
16π

[
−(n− 2)δα+

σ

2(n− 1)`2
[(n− 1 + σ)φ2δφ1 − (n− 1− σ)φ1δφ2]

]
. (4.6)

(Each of the two terms in (3.5) has a divergence of order rσ alt large r, but these cancel

when the two terms are added.) Note that (4.6) is precisely of the form (1.6), with E in

this case given by (1.8) with K(φ1, φ2) = 0.

It is straightforward to evaluate the expression (3.16) for the holographic mass for

these generic Einstein-Scalar black holes with 0 < σ < 1. We find that in order to remove

a divergence at order rσ, the counterterm coefficient e1 must be chosen such that

e1 =
1

8
(n− 1− σ)(1− 4γ) . (4.7)
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The higher-order counterterms in (3.11) are not needed for removing divergences in these

examples, and so we can simply set ei = 0 for i ≥ 2. The holographic mass is then given by

M =
ωn−2
16π

[
−(n− 2)α+

[(n− 1)(4γ − 1) + σ]σ

2(n− 1)`2
φ1 φ2

]
. (4.8)

The most natural choice for the free parameter γ is to choose it so that the mass is simply

proportional to α, i.e. proportional to the coefficient of r3−n in the metric function g00. In

view of (4.7), this is achieved by taking

γ =
n− 1− σ
4(n− 1)

, e1 =
(n− 1− σ)σ

8(n− 1)
. (4.9)

This then implies that the holographic mass of the Einstein-Scalar black holes with 0 <

σ < 1 is simply given by5

M = −(n− 2)ωn−2 α

16π
. (4.10)

Another reason for favouring the choice of parameters (4.9) that leads to the mass (4.10)

is that we obtain exactly the same result for the mass if we use the AMD conformal pro-

cedure, which is given by (3.20) and (3.21) for our metrics.

The evaluation of δH on the outer horizon gives TδS, and so from (1.4) and we obtain

the first law of thermodynamics

dM = TdS − σ ωn−2
32π(n− 1) `2

[(n− 1 + σ)φ2dφ1 − (n− 1− σ)φ1dφ2] . (4.11)

Although (4.11) was derived for σ lying in the restricted range 0 < σ < 1, it also reproduces

the result obtained in [10] if we set σ = 1. Note that since φ1 and φ2 have the dimensions

of (Length)(n−1∓σ)/2 respectively, the ratio φn−1−σ1 /cφn−1+σ2 is dimensionless. The scalar

contribution to the first law would therefore vanish if this ratio were equal to a fixed

dimensionless number, which could include 0 or ∞.

5 Further examples outside 0 < σ < 1

The general discussion in the previous section was for n-dimensional Einstein-Scalar black

holes with 0 < σ < 1. This corresponds to the range of negative mass-squared values for the

scalar field given in (4.2), with σ = 0 corresponding to the Breitenlohner-Freedman limit.

For values of the scalar mass that lie outside this range, one really has to consider examples

on a case by case basis, since the structure of the dominant terms in the asymptotic

expansions become rather dependent on the range for the scalar mass. Below, we shall

present a few illustrative examples.

First, we note that there is a natural upper limit to the mass-squared range we should

consider, namely m2 = 0. This can be seen by noting, as is already evident in (4.3), that

the dominant back-reaction of the scalar field on the metric at large r occurs in the function

5Other choices for the parameter γ would amount to adding a constant multiple of φ1 φ2 to the definition

of the mass. This would be rather like the Legendre transformations that one makes between different forms

of energy in standard thermodynamics, such as the free energy, Helmholtz energy, enthalpy, and so on.
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f at order 1/rn−3−σ. If this power were actually to exceed r2 then the back-reacted metric

would no longer be asymptotic to AdS. This implies we must have

σ < n− 1 , and hence m2 < 0 . (5.1)

We now proceed to consider some specific examples. These serve to illustrate some of

the new features that can arise in certain cases.

5.1 Special examples

5.1.1 n = 4, σ = 1

The value σ = 1 corresponds to the cases that arise for gauged supergravity theories

in four dimensions. In fact, these potentials are typically even functions of φ, and so

γ3 = γ5 = · · · = 0. We shall, however, keep γ3, γ5, etc., arbitrary and non-zero for

now, since this allows greater generality in our results. It also introduces new features in

the solutions.

We find that the scalar and metric functions have large-r expansions of the form

φ =
φ1
r

+
φ2
r2
− 3γ3 `

2φ21 log r

r2
+ · · · ,

h = r2`−2 + 1 +
α

r
+ · · · ,

f = r2`−2 + 1 +
1

4
`−2 φ21 +

f1
r
− 2γ3 φ

3
1 log r

r
+ · · · , (5.2)

with

f1 = α+
1

3
γ3 φ

3
1 +

2

3
`−2 φ1φ2 . (5.3)

Note that the terms with log r dependence are associated with having a non-vanishing

coefficient γ3 in the Taylor expansion of the scalar potential. This feature also persists at

higher orders in the expansion.

The Wald formula (3.5) gives

δH∞ =
ω2

16π

[
−2δα+ γ3 φ

2
1δφ1 +

1

3
`−2 (2φ2δφ1 − φ1δφ2)

]
. (5.4)

The AMD calculation of the mass, using (3.20), gives

MAMD = −αω2

8π
. (5.5)

If γ3 6= 0, we find in the calculation (3.16) of the holographic mass that it is necessary

to take e1 = 1
2 − 2γ in order to remove a linear divergence, and also to set γ = 1

6 to remove

a logarithmic divergence. The result for the holographic mass is then

Mhol =
ω2

16π

[
−2α+

1

3
γ3 φ

3
1

]
, (5.6)

and so we find

δH∞ = δMhol +
ω2

48π`2
(2φ2δφ1 − φ1δφ2) . (5.7)

Note that Mhol 6= MAMD in this γ3 6= 0 case.
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If we were to take γ3 = 0, then the absence of the log r terms in the asymptotic

expansion means that there is now only a single, linear, divergence in the calculation of the

holographic mass, and so only the counterterm coefficient e1 is determined, e1 = 1
2 − 2γ,

leaving γ arbitrary. The holographic mass is now given by

Mhol =
ω2

16π

[
−2α− 1

3
`−2 (1− 6γ)φ1φ2

]
. (5.8)

We could make the simple choice γ = 1
6 , just as was forced in the γ3 6= 0 case, and then

the holographic mass agrees with the AMD mass (5.5). We then obtain the same Wald

variational result (5.7) as in the γ3 6= 0 case.

5.1.2 n = 5, σ = 1

This example, for which we have m̂2 = −15
4 `
−2, lies at the upper limit of the range

0 < σ < 1 that we discussed above. In fact, its leading-order terms fit within the general

pattern of the 0 < σ < 1 solutions discussed previously, but we have included it here

because by considering a specific example we can easily illustrate the pattern of some of

the higher-order terms in the asymptotic expansion. Thus we find

φ =
φ1

r
3
2

+
φ2

r
5
2

+
4`2γ3φ

2
1

r3
+

3`2φ1

8r
7
2

+ · · · ,

h = `−2r2 + 1 +
α

r2
+

φ21
20r3

+ · · · ,

f = `−2r2 + 1 +
φ21

4`2r
+
β

r2
+

8γ3φ
3
1

3r
5
2

+
27`2φ21 + 20φ22

48`2r3
+ · · · . (5.9)

Here we are seeing a term at order r−5/2 in the metric function f . This is a consequence

of considering a general scalar potential that has odd as well as even powers of φ, implying

that there will be back-reaction terms from the scalar field in the metric functions with

half-integer as well as integer powers of 1/r. (Note that the r−5/2 term in f vanishes

if γ3 = 0.)

The Wald calculation of δH in (3.5) gives

δH∞ =
ω3

16π

[
−3δα+

1

8
`−2(5φ2δφ1 − 3φ1δφ2)

]
. (5.10)

The AMD formula (3.20) for the mass of the black hole gives

MAMD = −3ω3 α

16π
. (5.11)

On the other hand, the holographic mass calculated from (3.16) turns out to be

Mhol =
ω3

16π

[
−3α+

1

8
`−2 (16γ − 3)φ1φ2

]
, (5.12)

with the counterterm e1 determined to be e1 = 3
4(1− 4γ) in order to remove a divergence.

The freedom to choose the boundary coefficient γ represents an arbitrariness associated

with making a Legendre transform to a different energy function. It would be natural in

this case to take γ = 3
16 , so that the holographic mass would coincide with the AMD mass.
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5.1.3 n = 5, σ = 2

In this case, we have m̂2 = −3`−2. Now we have

φ =
φ1
r
− 3`2γ3φ

2
1

r2
+
φ2 + c log r

r3
+ · · · ,

h = `−2r2 + 1 +
α+ a log r

r2
+ · · · ,

f = `−2r2 + 1 +
1

6
`−2φ21 −

4γ3φ
3
1

3r
+
β + b log r

r2
+ · · · , (5.13)

where

a = − 1

12
φ21 , b = −1

3
φ21 +

(
9

2
`2γ23 − γ4 −

1

12
`−2
)
φ41 ,

c = −1

2
`2φ1 +

(
9`4γ23 − 2`2γ4 −

1

6

)
φ31 ,

β = α+
1

2
`−2φ1φ2 +

3

16
φ21 +

1

48
`−2

(
1 + 4`2γ4 + 126`4γ23

)
φ41 . (5.14)

The Wald formula (3.5) gives

δH∞ =
ω3

16π

[
−3δα+

1

2
`−2(3φ2δφ1 − φ1δφ2) + δK

]
,

K =
3

16
φ21 +

1

4

(
γ4 +

1

12
`−2 − 9

2
`2γ23

)
φ41 . (5.15)

(Note that the two terms in (3.5) each separately have divergences at large r, but the sum

is finite.)

The AMD mass formula (3.20) has a logarithmic divergence at large r, with a coefficient

proportional to φ21. The holographic mass, given by (3.16) is also in general logarithmically

divergent, but we can obtain a finite answer if we restrict the coefficients γ3 and γ4 in the

scalar potential so that

γ4 = − 1

12
`−2 +

9

2
`2 γ23 . (5.16)

In addition, we must choose the coefficients of the boundary term and counterterms for

the scalar field so that

γ =
1

4
, e1 = 0 , e2 =

1

2
`2 γ3 . (5.17)

The condition (5.16) on γ4 that is needed in order to obtain a finite holographic mass

is precisely such that it removes the φ41 term in K in (5.15). The φ4 counterterm, with

coefficient e3, is not needed in order to remove divergences from the holographic mass.

However, it does make a finite contribution to the mass that is proportional to φ41, and by

choosing it to have the value

e3 = − 1

48
+

9

2
`4 γ23 , (5.18)

one can remove all φ41 contributions to Mhol, leaving just

Mhol =
ω3

16π

[
−3α+

3

16
φ21 +

1

2
`−2 φ1φ2

]
. (5.19)
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We then find from (5.15) that

δH∞ = δMhol +
ω3

16π`2
(φ2δφ1 − φ1δφ2) . (5.20)

5.1.4 n = 5, σ = 5
2

In this case, we have m̂2 = −39
16`
−2. We have

φ =
φ1

r
3
4

+
c1

r
3
2

+
c2

r
9
4

+
c3

r
11
4

+
c4

r
12
4

+
φ2

r
13
4

+ · · · ,

h = `−2r2 + 1 +
a1

r
3
2

+
α

r2
+ · · · ,

f = g2r2 + b1r
1
2 + 1 +

b2

r
1
4

+
b3
r

+
b4

r
3
2

+
b5

r
7
4

+
β

r2
+ · · · , (5.21)

where

a1 = − 5

28
φ21 , b1 =

1

8
`−2φ21 , b2 = −16

21
γ3φ

3
1 ,

b3 =
1

12544
`−2

(
−637− 12544`2γ4 + 59392`4γ23

)
φ41 ,

b4 = −27

64
φ21 , b5 =

1

882

(
1925γ3 − 3136γ5 + 30464`2γ3γ4 − 55296`4γ33

)
φ51 ,

c1 = −16

7
`2γ3φ

2
1 , c2 =

1

672

(
−105− 1792`2γ4 + 6144`4γ23

)
φ3 ,

c3 = −15

16
`2φ1 , c4 =

`2

441

(
2275γ3 − 3920γ5 + 34048`2γ3γ4 − 55296`4γ33

)
φ41 . (5.22)

Each of the two terms in the Wald formula (3.5) contains divergences at large r but the

sum of the two gives the simple and finite result

δH∞ =
ω3

16π

[
−3δα+

5

32
`−2(13φ2δφ1 − 3φ1δφ2)

]
. (5.23)

In this example the rate at which the metric approaches AdS is too slow, if φ1 6= 0,

for the AMD formula (3.20) to give a finite mass; there is a divergence of order r1/2 with

a coefficient proportional to φ21. On the other hand, the holographic mass formula (3.16)

does give a finite result, although we must now add the extra counterterms with coefficients

e2, e3 and e4 in (3.11) in order to cancel divergences. Specifically, we find now that we

must choose

γ =
1

4
, e1 = 0 , e2 =

2

7
`2γ3 , e3 =

3

64
− 72

49
`4γ23 + `2γ4 ,

e4 = −39

14
`2γ3 +

20736

343
`6γ33 −

288

7
`4γ3γ4 + 6`2γ5 , (5.24)

and then the holographic mass is given by

Mhol =
ω3

16π

[
−3α+

25

32
`−2 φ1φ2

]
. (5.25)

From (5.23) we therefore have

δH∞ = δMhol +
5ω3

64π`2
(φ2δφ1 − φ1δφ2) . (5.26)
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5.1.5 n = 7, σ = 2

This can arise in gauged supergravities in seven dimensions. We have

φ =
φ1
r2
− `2φ1(4 + 3γ3φ1) log r

2r4
+
φ2
r4

+ · · · ,

h = `−2r2 + 1− 2φ21 log r

15r4
+
α

r4
+ · · · ,

f = `−2r2 + 1 +
φ21

5`2r2
− 2φ21(3 + 2γ3φ1) log r

5r4

+
α

r4
+
φ1
(
`2φ1(13 + 3γ3φ1) + 24φ2

)
45`2r4

+ · · · . (5.27)

The Wald formula (3.5) gives

δH∞ =
ω5

16π

[
−5δα+

2

3
`−2(2φ2δφ1 − φ1δφ2) + δK

]
, K =

5

9
φ21 +

1

6
γ3φ

3
1 . (5.28)

The AMD mass is divergent in this case, since the metric approaches AdS too slowly.

In the calculation of the holographic mass, a quadratic divergence is removed by the φ2

counterterm in the standard way, provided that

e1 = 1− 4γ . (5.29)

However, this leaves a logarithmically-divergent contribution to the mass, of the form

Mlog =
ω5

16π

[
2(1− 4γ)φ21 + (1− 6γ) γ3 φ

3
1

]
log r . (5.30)

The value of the boundary term coefficient γ should not depend on the specific parameters

(such as φ1) of the solution, and so this divergence seemingly cannot be removed in general,

and there does not appear to be any additional local counterterm that could do the job. One

possible resolution is to add a counterterm proportional to k
√
−hφ3 log

(
1
20`

2R
)
, which

will give an additional logarithmically-divergent contribution

Mlog,extra =
ω5 k

π
φ31 log r . (5.31)

Choosing γ = 1
4 and k = 1

32 γ3, the divergences are now cancelled, and the mass becomes

M =
ω5

16π

[
−5α+

5

9
φ21 +

(
5

12
γ3 + `−2 e2

)
φ31 +

1

3
`−2 φ1 φ2

]
. (5.32)

A convenient choice for the counterterm coefficient e2 (which is not needed for removing

any divergence) is to take e2 = −1
4`

2 γ3, leading to M = ω5/(16π) (−5α+K + 1
3`
−2 φ1 φ2),

where K is defined in (5.28). The first law then becomes

dM = TdS − ω5

16π`2
(φ2dφ1 − φ1dφ2) . (5.33)

This example provides an illustration of the fact that the calculation of the holographic

mass can become problematical in certain circumstances, especially when there is logarith-

mic dependence on the radial coordinate in the asymptotic expansions of the scalar and

– 20 –



J
H
E
P
0
3
(
2
0
1
5
)
1
6
5

metric functions. An alternative way to define the mass in this example, which sidesteps the

possibly questionable introduction of a non-local counterterm in the holographic renormal-

isation, is simply to use the Wald calculation of the first law itself as a way of determining

the mass. As we discussed in the introduction, we can read off the energy E, modulo the

freedom to make a Legendre transformation that adds a constant multiple of φ1 φ2, by

writing δH∞ as the sum of δE plus the non-integrable contribution involving the φ2δφ1
and φ1δφ2 terms. If we choose to fix this redefinition ambiguity by writing the ratio of the

two terms in the non-integrable piece as in (5.33), then the mass will be precisely the one

given in (5.32).

5.1.6 The Breitenlohner-Freedman limit σ = 0

This is the case where m2 saturates the Breitenlohner-Freedman bound, and hence σ = 0.

This can arise in five-dimensional gauged supergravities. The large-r expansion of the

scalar and metric fields takes the form

φ =
φ1 log r + φ2

r(n−1)/2
+ · · · , h = `−2r2 + 1 +

α

rn−3
+ · · · ,

f = `−2r2 + 1 +
b1(log r)2 + b2 log r + β

rn−3
+ · · · , (5.34)

where

b1 =
(n− 1)φ21
4(n− 2)`2

, b2 =
φ1((n− 1)φ2 − φ1)

2(n− 2)`2
,

β = α+
(n− 1)2φ22 − 2(n− 1)φ1φ2 + 2φ21

4(n− 1)(n− 2)`2
. (5.35)

The Wald formula gives

δH∞ =
ωn−2
16π

[
−(n− 2)δα+

1

2
`−2(φ2δφ1 − φ1δφ2)−

φ1δφ1
(n− 1)`2

]
. (5.36)

The AMD formula (3.20) gives the mass

MAMD = −(n− 2)ωn−2 α

16π
. (5.37)

Using instead the expression (3.16) for the holographic mass, we find that in order to

remove logarithmic divergences we must take

e1 = 0 , γ =
1

4
, (5.38)

and this then implies

Mhol =
ωn−2
16π

[
−(n− 2)α− φ21

2(n− 1)`2

]
. (5.39)

Thus in terms of the holographic mass, we find

δH∞ = δMhol +
ωn−2
32π`2

(φ2δφ1 − φ1δφ2) . (5.40)

– 21 –



J
H
E
P
0
3
(
2
0
1
5
)
1
6
5

5.1.7 Imaginary σ

This corresponds to the situation where m2 is more negative than the Breitenlohner-

Freedman bound. Within the framework of a purely static ansatz for the fields, one still

obtains perfectly regular Einstein-Scalar black holes. However, since the scalar field is

now genuinely tachyonic, with complex energy eigenstates, one would find exponentially-

growing time-dependent instabilities of the static solutions. For our present purposes, it

is still of interest to consider the static solutions in their own right, since such instabilities

will not be present within the framework of purely static solutions.

Taking

σ = i σ̃ , (5.41)

we find that the leading-order terms in a large-r expansion of the scalar and metric functions

take the form

φ =
φ1 cos

(
1
2 σ̃ log r

)
+ φ2 sin

(
1
2 σ̃ log r

)
r(n−1)/2

+ · · · ,

h = `−2r2 + 1 +
α

rn−3
+ · · · ,

f = `−2r2 + 1 +
b1 cos(σ̃ log r) + b2 sin(σ̃ log r) + β

rn−3
+ · · · , (5.42)

with

b1 =
1

8(n− 2)`2
[
(n− 1)

(
φ21 − φ22

)
− 2σ̃φ1φ2

]
,

b2 =
1

8(n− 2)`2
[
σ̃
(
φ21 − φ22

)
+ 2(n− 1)φ1φ2

]
,

β = α+

(
φ21 + φ22

) [
(n− 1)2 + σ̃2

]
8(n− 1)(n− 2)`2

. (5.43)

The Wald formula gives

δH∞ =
ωn−2
16π

[
−(n− 2)δα− 1

4
`−2σ̃(φ2δφ1 − φ1δφ2) + δK

]
,

K = − σ̃2

8(n− 1)`2
(
φ21 + φ22

)
. (5.44)

Calculating the mass using the AMD formula (3.20), we find simply

MAMD = −(n− 2)ωn−2 α

16π
. (5.45)

Calculating the holographic mass from (3.16), we find that in order to remove dependence

of the large-r expansion on the trigonometric functions of log r we must choose

e1 = 0 , γ =
1

4
, (5.46)

then leading to

Mhol =
ωn−2
16π

[
−(n− 2)α− σ̃2

8(n− 1)`2
(
φ21 + φ22

)]
. (5.47)
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Thus from (5.44) we find

δH∞ = δMhol −
σ̃ ωn−2
64π`2

(φ2δφ1 − φ1δφ2) . (5.48)

6 Numerical analysis of black holes in gauged supergravities

Recently, there has been progress in constructing exact black hole solutions in Einstein

gravity coupled to scalar fields. The construction treats the scalar potential as a specifiable

function that is to be determined by the third equation of (2.10). Making an ansatz that

relates the metric functions and the scalar field, one can then obtain exact solutions [25–

30]. However, in all these constructions the solutions are not generic, and one has either

φ1 = 0 or φ2 = 0, so the first law of thermodynamics is therefore unmodified by the scalar

charges. Thus these solutions do not provide examples for illustrating the first law we have

obtained in this paper.

In this section, we use numerical methods to construct solitons and black holes in which

both φ1 and φ2 are non-vanishing. Furthermore, we focus on such solutions in gauged

supergravities. A class of scalar potentials in gauged supergravities in n dimensions can be

summarised in terms of the following superpotential [31]:

W =
Ng(n− 3)√

2

(
e−

1
2
a1φ − a1

a2
e−

1
2
a2φ

)
, (6.1)

where

a21 =
4

N
− 2(n− 3)

n− 2
, a1a2 = −2(n− 3)

n− 2
. (6.2)

The scalar potential is then given by

V =

(
dW

dφ

)2

− n− 1

2(n− 2)
W 2 . (6.3)

Thus we have

N = 1 : V = −(n− 1)g2

[
(n− 3)e

−
√
2φ√

(n−1)(n−2) + e

√
2(n−3)φ√

(n−1)(n−2)

]
,

N = 2 : V = −g2
[
(n− 3)2e

−
√
2φ√
n−2 + 4(n− 3)e

(n−4)φ√
2(n−2) − (n− 5)e

√
2(n−3)φ√
n−2

]
. (6.4)

Both of these scalar potentials can be embedded in appropriate gauged supergravities in

n = 4, 5, 6 and 7 dimensions. The N = 1 and N = 2 potentials were summarised first

in [32] and [33] respectively. At the linearised level, we have

V = −(n− 1)(n− 2)g2 − (n− 3)g2φ2 + · · · . (6.5)

This implies that m2 = −2(n− 3)g2 and hence σ2 = (n− 5)2 . The asymptotic behaviour

for various values of σ in general dimensions was discussed in the previous sections.
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6.1 Inner expansions

In order to perform numerical calculations, we start with a solution in an inner region,

and then integrate it out to infinity. As discussed earlier, for σ in an appropriate range,

this procedure cannot fail to give a solution with good behaviour near infinity, since both

solutions to the relevant second-order equations have good asymptotic behaviour. There

are two classes of solution that are of interest. One is of the solitonic type, where r starts

at r = 0. Regularity at r = 0 requires that h(r) and φ(r) approach constants, and f(r)

approaches 1, as r goes to zero. Performing Taylor expansions, we find

h = h0

(
1− V (φ0)

(n− 1)(n− 2)
r2 − V ′(φ0)

2

4(n2 − 1)(n− 2)
r4 + · · ·

)
,

f = 1− V (φ0)

(n− 1)(n− 2)
r2 − nV ′(φ0)

2

2(n2 − 1)(n− 1)(n− 2)
r4 + · · · ,

φ = φ0 +
V ′(φ0)

2(n− 1)
r2 + · · · . (6.6)

The other class of solutions of interest are black holes. Assuming that the horizon is

located at r = r0 > 0, we find that the near-horizon expansion is given by

h = h1
[
(r − r0) + h2(r − r0)2 + · · ·

]
,

f = f1(r − r0) + f2(r − r0)2 + · · · ,

φ = φ0 +
(n− 2)r0V

′(φ0)

(n− 2)(n− 3)− r20V (φ0)
(r − r0) + · · · , (6.7)

where

f1 =
(n− 2)(n− 3)− r20V (φ0)

(n− 2)r0
,

f2 = − 1

4(n− 2)2r30f1

[
2(n− 2)3(n− 3)2 − 4(n− 2)(n− 3)2r20V (φ0)

+ 2(n− 4)r40V (φ0)
2 + 3(n− 2)r40V

′(φ0)
2
]
,

h2 = − 1

4(n− 2)2r30f
2
1

[
2(n− 2)3(n− 3)2 − 4(n− 2)(n− 3)2r20V (φ0)

+ 2(n− 4)r40V (φ0)
2 − (n− 2)r40V

′(φ0)
2
]
. (6.8)

We can now use these inner Taylor expansions, either for the solitons or the black holes,

to provide initial data for the numerical integration of the equations (2.10) out to infin-

ity. Matching the asymptotic numerical results with the large-r expansions we obtained

previously, we can read off the parameters φ1, φ2 and the mass M as functions of the

free parameters of the inner expansion. Note that the parameter h0 in the solitonic case,

and the parameter h1 in the black hole case, are “trivial” in the sense that they could be

absorbed into a rescaling of the time coordinate. Thus h0 or h1 are not to be thought of as

free parameters, but should instead be fixed by requiring that the asymptotic AdS metric

has a canonically-normalised time coordinate.
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The upshot is that for the solitons, the inner solution has only one non-trivial free

parameter, namely φ0. The mass M and the scalar charges φ1 and φ2 in the asymptotic

solutions are then all functions of φ0. This implies that we can, for example, view M and φ2
as functions of φ1. For the black holes, the inner solutions are specified by two non-trivial

parameters, namely the horizon radius r0 and the parameter φ0. The three parameters

(M,φ1, φ2) in the asymptotic solutions are then determined as functions of these two inner

parameters. With these data, we can then test the first law that we derived. We shall do

this dimension by dimension from D = 4 to D = 7 in the following subsections. In all the

numerical analysis, we set ` = 1/g = 1. Typically, we work to an accuracy of about three

significant figures.

6.2 n = 4 dimensions

For the N = 1 potential, the Lagrangian is given by

e−1L = R− 1

2
(∂φ)2 + 6g2 cosh

(
1√
3
φ

)
. (6.9)

The theory can be embedded in the STU supergravity model. The first law in this σ = 1

example was discussed in section 5.1.1. (See also [10, 20].) Note that this potential is

symmetric, and so in particular γ3 = 0. Thus the “first law” for the soliton is given by

dM = −1

6
φ2dφ1 +

1

12
φ1dφ2 . (6.10)

In order to verify the above differential relation in the numerical solutions, it is convenient

to make a Legendre transformation and define a new energy function M̃ = M − 1
12φ1φ2 so

that the first law becomes simply

dM̃ = −1

4
φ2dφ1 . (6.11)

As we discussed earlier, the soliton solution contains only one non-trivial parameter, and

without loss of generality we may take this, in terms of the parameters in the asymptotic

form of the solutions, to be φ1. Both M̃ and φ2 are then functions of φ1. For small φ1 . 5,

we find that the numerical fits for M̃ and φ2 are

M̃ = 0.0793φ21 + 0.00436φ41 − 0.000436φ51 + 0.0000184φ61 + · · · ,

−1

4
φ2 = 0.158φ1 + 0.0175φ31 − 0.00221φ41 + 0.000114φ51 + · · · . (6.12)

Thus we see that the differential relation (6.11) is confirmed up to three significant figures.

Using the numerical methods, we can verify that scalar-charged black hole solutions

also exist for (6.9). The asymptotic charges (M,φ1, φ2) for these solutions are functions of

the two inner parameters r0 and φ0. The corresponding first law is given by

dM = TdS − 1

6
φ2dφ1 +

1

12
φ1dφ2 . (6.13)
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We shall make a specific choice for the value of r0, namely r0 = 1, which implies that the

entropy is fixed and the first law is reduced to (6.11). We find that

M̃ = 1.00 + 0.0816φ21 + 0.00436φ41 − 0.000444φ51 + 0.0000191φ61 ,

−1

4
φ2 = 0.163φ1 + 0.0175φ31 − 0.00224φ41 + 0.000118φ51 . (6.14)

Thus we see that (6.11) holds up to three significant figures. The Schwarzschild limit is

achieved when the scalar charges vanish, and the resulting mass becomes M = 1 = M̃ for

r0 = 1 and g = 1. Note also that in this Taylor expansion of φ2 in terms φ1, the coefficient

of φ21 vanishes. Of course our choice of a specific value for r0 was not made without loss

of generality (since we had already, without loss of generality, fixed the gauge coupling

constant to g = 1). In principle, we could repeat the computations for a range of different

r0 values, but here for the sake of brevity we selected just one choice.

We now consider the N = 2 example, for which the Lagrangian is

e−1L = R− 1

2
(∂φ)2 + 2g2(coshφ+ 2) . (6.15)

The theory can be embedded in either the STU model, or N = 4 gauged supergravity.

Although the scalar potential is different from the N = 1 case, we still have σ = 1, and

hence the first laws (6.10) and (6.13) are the same. The soliton and black hole solutions

were constructed numerically in [8, 9]. Following the same strategy as we did for the N = 1

case, we find that for the soliton solution with φ2 . 2,
(
M̃, φ2

)
can be expressed in terms

of φ1 as follows

M̃ = 0.0796φ21 − 0.00130φ41 − 8.49× 10−6φ61 + · · · ,

−1

4
φ2 = 0.159φ1 − 0.00520φ31 − 0.0000504φ51 . (6.16)

For the black holes with r0 = 1, we have

M̃ = 1.00 + 0.0819φ21 − 0.00101φ41 + 6.52× 10−6φ61 ,

−1

4
φ2 = 0.164φ1 − 0.00404φ31 + 0.0000409φ51 . (6.17)

Thus for both cases, we find that the relation (6.11) holds to a good degree of precision.

Finally, we present in figure 1 plots of (M,φ2) as functions of φ1 for larger ranges of

φ1 for the soliton solutions.

6.3 n = 5 dimensions

In n = 5 dimensions, the scalar potentials become

N = 1 : V = −4g2
(

2e
− 1√

6
φ

+ e
2√
6
φ
)
,

N = 2 : V = VN=1(−φ) . (6.18)
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Figure 1. The left and right plots are for solitons in the N = 1 and N = 2 cases respectively. For

N = 1, −φ2 is a monotonically increasing function; we have verified this up to φ1 ∼ 40. For N = 2,

−φ2 has an extremum, which was observed also in [7].

Thus we need only consider the N = 1 case. For this, we have σ = 0, corresponding to

the BF bound, for which the asymptotic behaviour for general dimensions was discussed

in section 5.1.6. The first laws for solitons and black holes are given by

Solitons : dM = − π

16
(φ2dφ1 − φ1dφ2) ,

Black holes : dM = TdS − π

16
(φ2dφ1 − φ1dφ2) , (6.19)

where the mass M is defined to be the holographic mass rather than the AMD mass, as

discussed in section 5.1.6. For our purposes, we define M̃ = M − π
16φ1φ2, so that the first

law for solitons becomes

dM̃ = −π
8
φ2dφ1 . (6.20)

For black holes, if we let the horizon radius r0 and hence the entropy be fixed, the first law

also reduces to (6.20). For solitons with small φ1 . 1, we find

M̃ = 0.000686φ21 − 0.0531φ31 − 0.0178φ51 + · · · ,

−π
8
φ2 = 0.00141φ1 − 0.160φ21 − 0.0887φ41 + · · · . (6.21)

For black holes with radius chosen again to be r0 = 1, we find

M̃ = 2.36 + 0.00568φ21 − 0.0497φ31 − 0.0132φ51 + · · · ,

−π
8
φ2 = 0.0107φ1 − 0.150φ21 − 0.0667φ41 + · · · . (6.22)

Thus we see that the relation (6.20) is well satisfied by both the solitons and by the black

holes with the example value r0 = 1. Note that the Schwarzschild AdS black hole arises

when φ1 vanishes, corresponding to M = 3
4π = M̃ .

6.4 n = 6, 7 dimensions

The scalar potentials are given in (6.4). In six dimensions, we have σ = 1. The asymptotic

behavior was discussed in [10], and also in section 4 of this paper. The first laws for the

solitons and the black holes are given by

Solitons : dM = − π

30
(3φ2dφ1 − 2φ1dφ2) ,

Black holes : dM = TdS − π

30
(3φ2dφ1 − 2φ1dφ2) . (6.23)
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For the σ = 1 case, the holographic and AMD masses are both well defined, and they

coincide. Defining M̃ = M − π
15φ1φ2, we find that the first laws for the solitons and black

holes with fixed r0 reduce to

dM̃ = −π
6
φ2dφ1 . (6.24)

The numerical analysis becomes more difficult to carry out for higher dimensions. For the

N = 1, 2 cases, we find that (for φ1 . 1.5)

N = 1 soliton:

M̃ = 0.392φ21 − 0.0963φ41 + 0.0498φ51 − 0.0112φ61 + · · · ,

−π
6
φ2 = 0.782φ1 − 0.383φ31 + 0.251φ41 − 0.0695φ51 + · · · ;

N = 1 black hole with r0 = 1:

M̃ = 4.19 + 0.391φ21 − 0.0794φ41 + 0.0348φ51 − 0.00693φ61 + · · · ,

−π
6
φ2 = 0.781φ1 − 0.313φ31 + 0.169φ41 − 0.0401φ51 + · · · ;

N = 2 soliton:

M̃ = 0.421φ21 + 0.127φ31 − 0.00315φ51 + · · · ,

−π
6
φ2 = 0.843φ1 + 0.379φ21 − 0.0148φ41 + · · · ;

N = 2 black hole with r0 = 1:

M̃ = 4.19 + 0.431φ21 + 0.119φ31 − 0.00200φ51 + · · · ,

−π
6
φ2 = 0.856φ1 + 0.361φ21 − 0.0101φ41 + · · · . (6.25)

Thus we see that our numerical results show that the (6.24) is well satisfied. Note that the

mass of the Schwarzschild AdS black hole with r0 = 1 is 4π/3 ∼ 4.19.

In seven dimensions, we have σ = 2, and the asymptotic behavior was discussed in

section 5.1.5. The first law can be expressed as (5.33). In terms of M̃ = M − ω5
16πφ1φ2,

we have

dM̃ = −π
2

8
φ2dφ1 . (6.26)

We find for φ1 . 1 that

N = 1 soliton:

M̃ = 0.519φ31 − 0.0788φ51 + · · · ,

−π
2

8
φ2 = 1.57φ21 − 0.403φ41 + · · · ;

N = 1 black hole with r0 = 1:

M̃ = 6.17 + 0.533φ31 − 0.0688φ51 + · · · ,

−π
2

8
φ2 = 1.60φ21 − 0.345φ41 + · · · ;
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N = 2 soliton:

M̃ = 0.0664φ21 + 15.3φ31 − 0.535φ41 + 0.0542φ51 + · · · ,

−π
2

8
φ2 = 0.158φ1 + 45.7φ21 − 2.08φ31 + 0.248φ41 + · · · ;

N = 2 black hole with r0 = 1:

M̃ = 6.17 + 0.0719φ21 + 15.3φ31 − 0.542φ41 + 0.0564φ51 + · · · ,

−π
2

8
φ2 = 0.164φ1 + 45.7φ21 − 2.11φ31 + 0.258φ41 + · · · . (6.27)

Thus we see that the relation (6.26) is well satisfied by both N = 1 and N = 2 solitons

and black holes. Note that Schwarzschild black hole mass is M = 5π2/8 ∼ 6.17 for r0 = 1.

7 Conclusions

In this paper, we have studied some of the properties of static, spherically-symmetric,

black hole and soliton solutions in n-dimensional theories of gravity coupled to a scalar

field, in the case that there is a scalar potential V (φ) with a stationary point at φ = 0,

with V (0) < 0. This implies that there exist black hole and solitonic solutions that are

asymptotic to anti-de Sitter spacetime.

Included amongst these solutions are AdS spacetime itself (the trivial “soliton”) and

the Schwarzschild-AdS black hole; in each of these cases the scalar field is everywhere

zero. The solutions of interest to us in this paper are the ones where the scalar field is

non-vanishing, and, therefore, dependent on the radial coordinate r. Provided the mass of

the scalar lies in an appropriate range, these solutions are well-behaved and continue to

approach anti-de Sitter spacetime at infinity. The scalar may, however, make a contribution

to the mass of the black hole. More importantly, it makes a non-trivial contribution to

the thermodynamics, providing an additional contribution in the first law, of the form

given in (1.10).

The first law (1.10) was derived using the Wald procedure, which involves considering

an infinitesimal variation of the parameters in a solution, and hence deriving a closed

(n− 2) form whose integral δH over a bounding spacelike surface is therefore independent

of deformations of the surface. This means in particular that δH∞ = δHH+ , where δHH+

is evaluated on the outer horizon and δH∞ is evaluated at infinity. For the metrics of

interest, one finds δHH+ = TδS, while δH∞ = δE + (c1 φ2δφ1 − c2 φ1δφ2), hence leading

to (1.10). Here E is an integrable function of the parameters α, φ1 and φ2 that characterise

the asymptotic form of the solution, which is typically of the form (4.3). One may think

of E as the mass of the black hole, and in fact as we showed, it typically coincides with

the mass calculated by means of the renormalised holographic stress tensor. In the black

hole solutions, the three asymptotic parameters α, φ1 and φ2 are actually (numerically)

computable functions of the two non-trivial near-horizon parameters r0 and φ0 that specify

the family of black-hole solutions.
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It can be argued that if δH∞ is non-integrable, then the concept of mass as the charge

associated with a universally-defined and conserved Hamiltonian does not exist. However,

one may still define the mass by other means, and as we saw, in the case of the Einstein-

scalar black holes it can, in general at least, be defined via the AdS/CFT correspondence

and the holographic stress tensor. The non-integrability of δH∞ can then be attributed

to the contribution of a term involving the scalar hair to the first law of thermodynamics.

As we discussed in the introduction, one can construct other examples where δH∞ is non-

integrable, such as charged black holes in Einstein-Maxwell theory when one works in a

gauge where the electric potential vanishes on the horizon. In this example too, the non-

integrability is simply due to a contribution to the first law, namely the Φ dQ term in

dE = TdS + Φ dQ.

In our discussions we have considered three different ways to calculate the mass,

or energy, of the Einstein-Scalar black holes. Firstly, as mentioned above, we used the

renormalised holographic stress tensor of the dual field theory on the boundary of the

asymptotically-AdS black hole spacetime. This method is capable of giving a finite answer

in essentially all cases where the metric approaches the leading-order form of the AdS met-

ric itself at large distances, although there can be complications in cases where there is a

logarithmic dependence on the radial coordinate. There may also be ambiguities in the

calculation, associated with the freedom to add a constant multiple of φ1 φ2 to the energy.

The second method we considered involves the use of the conformal technique developed

by Ashtekar, Magnon and Das. This gives the mass as the integral of a certain electric

component of the Weyl tensor at infinity. The AMD mass is finite provided that the metric

approaches AdS no slower than in the Schwarzschild-AdS solution; that is to say, provided

that the metric functions h and f have the form

h(r) = r2`−2 + 1 +
α

rn−3
+ · · · , f(r) = r2`−2 + 1 +

β

rn−3
+ · · · , (7.1)

where the ellipses represent terms of higher order than those written.

The third way of calculating the mass that we discussed is from the Wald derivation

of the first law. For the reasons we explained previously, one cannot simply interpret

δH∞ itself as the variation of the energy, because it contains an inherently non-integrable

contribution from the variation of the parameters φ1 and φ2 in the asymptotic expansion

of the scalar field. We can, however, separate off this non-intgerable contribution, and

interpret the remainder of δH∞ as the variation of the energy. This separation is not unique,

but the non-uniqueness is the same as we saw before, namely the freedom to perform a

Legendre transformation to a new energy function by adding a constant multiple of φ1 φ2.

This ambiguity can be fixed uniquely by defining one’s choice of the relative ratio between

the two terms in the non-integrable contribution c1 φ2dφ1 − c2 φ1dφ2 in the first law.

Of the three methods for calculating the mass, the AMD procedure is the least widely

applicable. However, in cases where it can be applied, it provides results that are consistent

with the other two. The holographic mass calculation and the calculation from the first

law in general yield consistent results, in cases where they can both be applied. We found

one example, in seven dimensions, where we could only remove a logarithmic divergence in
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the holographic mass by the rather questionable introduction of a non-local counterterm.

In this example, by contrast, the mass could still be calculated by our third method, via

the first law.

There is also a question as to whether one should allow variations of φ1 and φ2 in a “first

law” that correspond to making changes to the boundary conditions of the scalar field. This

seems to be more a question of viewpoint rather than of substance. In his derivation, Wald

distinguishes between two versions of the first law, namely the “physical states version”

and the “equilibrium states version” [3]. In the former, one envisages an actual physical

process by which a stationary black hole evolves into a new final stationary black hole

state. In the latter, one simply starts from a given stationary solution and compares it

with a nearby solution obtained by making infinitesimal variations of the parameters in the

solution. We are taking this latter viewpoint in our discussion, and the first law (1.10) can

be taken to be simply a mathematical statement of how the entropy, viewed as a function

of the parameters specifying the black hole, changes under infinitesimal variations of those

parameters. The formula is valid whether one restricts to variations that preserve the

asymptotic boundary conditions on the scalar field or not.6

In fact, we have argued that one more or less has to adopt such a viewpoint when

considering black holes in a system such as the Einstein-Scalar theory that we have studied

in this paper. There have been discussions in the past, such as in [8, 18], where solitonic

solutions in the Einstein-Scalar theory have been considered. For these solutions one can

see that there exists a functional relationship between the parameters φ1 and φ2 in the

asymptotic expansion of the scalar field, and so one can integrate up the entire right-hand

side in the expression (1.6). Thus it could be absorbed into a redefinition of the mass,

thereby sidestepping the need to view the c1 φ2dφ1 − c2 φ1dφ2 terms as a distinct and

separate contribution in the first law. However, this is a somewhat restricted conclusion,

resulting from looking at non-generic solutions in the theory. For the black holes, as opposed

to the solitons, there is an additional parameter in the solutions, φ1 can no longer be viewed

as a function only of φ2, and so the c1 φ2δφ1− c2 φ1δφ2 terms in (1.6) cannot be integrated

up and absorbed into a redefinition of the mass. A concrete and fully explicit example

of this kind is provided by the dyonic Kaluza-Klein AdS black hole constructed in [20].

In these circumstances, it becomes natural to adopt the equilibrium states interpretation,

and include the c1 φ2dφ1 − c2 φ1dφ2 terms as a distinct additional contribution in the

first law. By this means one obtains a first law (1.10) for the Einstein-Scalar black holes

whose right-hand side is an exact differential in the two-dimensional parameter space of

solutions, leading to an integrable energy function E. As we showed, this energy function is

in agreement with the AMD or the holographic mass, in situations where those calculations

are well defined.
6A somewhat analogous example of a situation where one allows variations outside those usually consid-

ered is in a theory such as Einstein gravity with a cosmological constant, where the cosmological constant

itself is allowed to vary, and is treated as a further thermodynamic variable having an interpretation as

a pressure (see, for example, [34, 35]). That example is in a sense more extreme, in that one is actually

treating a parameter in the Lagrangian as a thermodynamic variable. Nevertheless, one can explore the

mathematical consequences of allowing such variations in the space of solutions, and one thereby derives

new insights into the concept of a conjugate “thermodynamic volume.”
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