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Quantum transport and integrability of the Anderson model for a quantum dot with multiple leads
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We show that an Anderson Hamiltonian describing a quantum dot connected to multiple leads is integrable.
A general expression for the nonlinear conductance is obtained by combining the Bethe ansatz exact solution
with Landauer-Bttiker theory. In the Kondo regime, a closed form expression is given for the matrix conduc-
tance at zero temperature and when all the leads are close to the symmetric point. A bias-induced splitting of
the Kondo resonance is possible for three or more leads. Specificall)j feads, with each at a different
chemical potential, there can be-1 Kondo peaks in the conductance.

DOI: 10.1103/PhysRevB.68.125327 PACS nunider72.15.Qm, 73.23.Hk, 73.63b

[. INTRODUCTION rium is split into N—1 peaks by increasing the difference
between the chemical potentials of the different leads. This

Since the first predictidnand realization of Kondo phys- then clearly shows why only a single peak of the conduc-
ics in a quantum dotQD),? nonequilibrium effects on the tance occurs in the two-lead system.
Kondo resonance due to a finite bias voltage across the dot This paper is organized as follows. In Sec. II, the model
have attracted increasing attention. In the experiments, thdamiltonian is described and a unitary transformation is dis-
zero bias peak of the differential conductances has been olussed for the integrability of the Hamiltonian. For the
served as a signature of the Kondo effect on electron trand¥-lead system, the scattering matrix from integrable excita-
port through a QD. In the unitary scattering limit, observa-tions is presented in Sec. Ill. By combining scattering ampli-
tions of perfect transmissidft provide further evidence for tudes from the Bethe ansatz exact solution with Landauer-
the Kondo effect in QD’s. The nonequilibrium density of Buttiker theory, a differential matrix conductance is derived
stategDOS) of the dot has been predictet exhibit a split- and the Kondo splitting peaks by finite biases are discussed
ting of the Kondo peak due to a bias voltage applied betweei Sec. IV. As an example, three- and four-lead systems are
the source and the drain. This splitting has not been observegPnsidered in Sec. V. In Sec. VI, some final remarks will be
in transport measurements. To observe the splitting of th&!ven.
Kondo resonance by a finite voltage bias, an experiment with
extra lead$” has been proposed. Very recently, such a split-
ting was observed in an experimBmthere a three-lead setup
was employed. We consider an Anderson model in whi¢h leads are

In a conventional bulk Kondo systénte.g., a magnetic coupled to the QD, as in Fig. 1. The leads are described
impurity in a metal, there is a single chemical potential and
the Kondo resonance in the DOS appears at the Fermi energ Y=—00
due to the formation of a singlet between the local moments
of the impurity and the conduction electrons. If the impurity =20 X=—-co
has available a second conduction band to form singlet 13 1o
states, a second Kondo resonance in the DOS might be ex
pected to occur at the chemical potential of the second con 7
duction band. The splitting of the Kondo resonance of a QD %
by the differential chemical potentials of the two leads then !
seems to be reasonable. However, it is not still clear why the
differential conductance has only a single peak at zero bias ir
experiments with two leads. Thus there arises a fundamente !
guestion associated with a Kondo resonance in a system wit|
several chemical potentials that can be fabricated in nanosX¥=—
cale electronic devices: Why have not the split Kondo peaks
been seen in two-lead systems? To help answer this questic y = o3
we consider a QD coupled to multiple leads. The QD is
described by an Anderson model generalized to a multiple-
lead one. It will be shown that the multiple-lead Anderson
model is integrable and exactly solvable by a unitary trans- F|G. 1. A quantum dotQD) coupled toN multiple leadsV,, is
formation and the Bethe ansdtz'®By using the exact so- the tunneling amplitude between theth lead and the QD is
lution, a general expression for the conductance of thehe chemical potential of thenth lead. The leads are presented
N-lead system shows that the Kondo resonance at equilibinder the unfolded formalism.

Il. MODEL AND UNITARY TRANSFORMATION
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under theunfoldedformalism with fermions. Within this for-
malism, fermions incident on the dok€0) from a lead
(x<0) are scattered away from the dot to leads(Q). In
the continuum limit, the multiple-lead Anderson model
Hamiltonian is given by

N
-i > f dXCh, (X) dyCrma(X) + 2 £4dld,
m=1,0 J—x o

H =
N
+UnTnl+m;1l Vplch (0)d,+H.c], (1)
wheren,,:df,d(, is the number of electrons of spinon the

dot andU is the on-site Coulomb repulsion,,, andd, are
the annihilation operators with spian for electrons in the
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This is a generalization of thd=2 case treated in Ref. 16.
The transformed Hamiltonian can be solved exactly because
the sub-HamiltonianH,, is the one-lead Anderson model
that is exactly solvable via the Bethe ans®t73

IIl. INTEGRABLE EXCITATIONS AND SCATTERING
AMPLITUDES

The scattering amplitudes of electronic excitations off the
QD coupled to theN leads can be calculated based on the
exact solution ofH;. In the transformedN leads, the inte-
grable excitations{¢,}, will scatter off the dot with some
pure phase shift with spiwr, 67(¢), where in particular
op(e)=0 for me[2N]. With the unfolded formalism, the
scattering can be described by the relation

leadm and the dotX,, is a sum over the multiple leadsn(

=1,...N). g4 is the energy level on the dot. Here the (5)

hopping amplitudes between the dot and the el ,,, are

allowed to be arbitrary. Equation(5) leads to the scattering amplitud8§ (&) of
Previously, it has been shown that, for tNe=2 case, a electronic excitations{,,}, of energys between leads in

unitary (Bogoliuboy transformation can be used to trans-the multiple-lead system. Assuming the relatiog,

form. thg 1é—|amllton|an to_ a .smgle-lead Anderson_Em,[UN]mm:ﬁm“ the scattering matrix is straightfor-
Hamiltonian.” We now generalize this to the case of generalwarmy given by

N. To do this, one performs a unitary transformatian,
=Uy,c, for the lead electrons, where=(c, ... ,cy) andc

=(cy, ... .Cy). The components of thex N matrix Uy are
a function of the hopping amplitudeg,,,. Uy should satisfy
UnUn=1. If () EqVelUn]mm = Sl Ul mVim, and (i)

S ViUl = VT for m=1 and 0 form’#1, one ob-
tains the one-lead Anderson Hamiltonian awé 1 free fer-
mion Hamiltonians. Then Bl X N unitary matrix for the mul- Sy, corresponds to a reflection amplituRtg, ., from mto m.

tiple leads has a form satisfying wiftuy];m=Vm/\T and ~ From Ty =L m, Ty +(e)=To, . (e) is automatically
I'=3,V2. ForN>2, actually, there are more freedoms to preserved.

choose a unitary matrix. The freedoms give us different ma-
trices for a wunitary transformation acting only on

(c,, ... cy), butleavingc, invariant, which does not affect . _
the physics. A similar unitary transformation was used to !N the out-of-equilibrium case, the added chemical poten-
study negative resistance fluctuations in quantum Halfial term destroys. thell_ntegrabmty of the model, which may
conductorg? render the applicability of the Bethe ansatz approach
: : g :
As a consequence, the unitary transformation satisfyin@uesnonab'é- However, as argued by Konik and

6 .
such conditions decomposes the multiple-lead Hamiltoniaifo-workers® (see especially, Sec. V, Ref. lfor the two-
into N independent sub-Hamiltonian... as lead case, as far as the computation of the nonequilibrium
mo:

conductance is concerned, all we need to know is the distri-
bution of particles in each of the leads, and the impact of the
different chemical potentials on the scattering amplitudes.
Because the particles in different leads do not interact with
each other, one may compute the distribution of particles in
different leads separately. That is, we may treat the problem
as if the particles are still in equilibrium for a certain lead at
the corresponding different chemical potential. As for the
scattering, the only effect arising from the different chemical
potentials is an overall phase factors, which does not contrib-
ute to the Landauer-Btiker conductance. Such a consider-
ation makes it possible to apply the results extracted from the
Bethe ansatz approach in the equilibrium case to the out-of-
equilibrium conductance. Then the current and the conduc-
tance through the QD can be obtained by the Landauer-
Buittiker theory® for quantum transport through nanodevices.

P(x>0)= el omi, (x<0).

o

S” (&)=8mm +2il e 5‘1’/2sin71,

mm’

(6)

wherel .,y =[UP,U" ],y andP is a polarization matrix:

[Pmlmm=1 and other entries are zero. Form', S isa

transmission amplitudd, , from m’ to m. For m=m’,

IV. DIFFERENTIAL MATRIX CONDUCTANCE

H=2> Hn, 2

where
ﬁle [—if dx?;lr(,(x)o’*,(~c1(,(x)Jreddf,d(,+UnTnl

+T (el (0)d,+H.c) 3

Hy=—i>, fw dXC (X)dyCmo(X) for me[2N].

(4)
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To describe scattering away from the Fermi energy and cale to the system, then, the electron scattering phase shift has
culate the differential conductance, we employ the af8atz two contributions from the charge®, and the spin sectors,
verified in Refs. 19 and 20. The ansatz allows us to use thpS % as given by

in-equilibrium scattering matrices to calculate the contribu-

tion to the current of any given excitation. Konik and co- 87=pg=pg(K)+pg\). (10
workers discussed the details of the implementation of th
nonequilibrium computation in Ref. 17. Wit (&)
=T, m(€), at zero temperature, the current in leadis
given by

She electronic scattering phase shifts are related to the den-
sity of statespy(k) andoy4(\) by the following equations:

q
p(K) = 60K+ [ “OA[01(9(0 ~\) ~27lag(n), (11
e Mm
In=f 2 de [T (e dunh) (@) 3
e P30 =300+ [ "\ 0900 - 1) 27loyn')
where u,, is the chemical potential at the leadand a

B
+J_de[é’l()\—g(k))—ZW]Pd(k), (12

1
|Tg1m’(8!{/u“m})|2:4l—‘§1m’5in2 55({(8,{,U«m}) . (8

whered=2 Rd S(x(\) +iy(\)]. g/B are the Fermi surfaces
To determined;, we solveH ; via the Bethe ansatz for the of the seas ok and\ excitations whileq is related to the

one-lead Anderson model. The integrabilitytdf leads to a band cutoff,D. Here 6, , for describing the dot momentum
set of quantization conditions identical to that of the one-leacshould be chosen to ensure thﬁ(kﬁ—_m):pd(?\ﬂm)
Anderson model. Single particle excitations with momenta=0. Moreover, the dot momenta are simply related to the
{k;} are identified by an appropriate basis. Scattered particlgot density of states:
eigenstates from the dot picks up thare phase§(k) = 0 s
—2tan Y[T'/(k—eg4)]. Calculating two particle eigenstates dpg(K)=2mpy(k), andd,pg(N)=—2moy(N). (13
makes it possible to get the scattering matrices of excitationgptegrating the density of states gives us the dot momenta.

The scattering matrices satisfying a Yang-Baxter relationshigsonsequently, the scattering phase shift is given by
are identical to that of the one-lead Anderson model. Then a

set of N, multi-particle eigenstates carrying total sp# . B a., ,
=N4/2—M should satisfy the quantization conditiéfisas 51:277],Dd kpd(k)+27fq d\'og(N). (14
oL 5(k) M g(kj) =N, Fil2 This phase shift satisfies the Langreth-Friedel sum réfe,
e : :};[1 (k) — A —i/2’ =2mn,, relating the phase shift to the total number of elec-

9 tonsng in the dot®3

To obtain the matrix conductance of the multiple-lead sys-

tem away from the symmetric point {— u,,= —U/2), we
B=1 Mg Ng—i =1 9(kj) =N\, Fil2’ need to do a numerical calculation for the associated integral
equations. But at the symmetric point the scattering phase

where g(k) = (k—sq—U/2)?/2UT and M characterizes the ghift is obtained by using an exact expression dgfk<0)
spin projection of the system with the auxiliary parameters(Ref. 13 and a direct relation between the phase shifts for

{\a}. Foreq>—U/2, then,N, total momentak’s form an  the electron with spin-o and the hole with spimr from a

N, particle ground state configuratioN,—2M of Ne mo-  property of electron-hole transformation based on thé2sU
mentak’s is real and M is complex viaM real\,’'s. The  spin symmetry. The phase shift is given'by

2M complex momenta are given by, =x(\,)*iy(\,)

N NgFi e g(k)— A ,—il2

with x(\)=U/2+g4— JUT [N+ (A2+1/4)Y2]Y2 and y(\) 3 - ATZ — 76— pum)?
= JUT[—\+ N2+ 1/4)Y212, d1(e)= 5 m=sin 4T2' o )2 +C(e),
According to Andrei’s procedure for determining the mo- kT 78~ tm 15

mentum,p, of an added electron in a periodic system of size
L,24?2 the quantization condition of the system leadspto where the Kondo temperature for a lead at chemical potential
=2mn/L. Contributions to the momentum come from the u, is

bulk of the system and the dot:

ur T 5
p=2mn/L=pyuit Pq/L. Tkm= N 5 xR opglleammea= pmtU) -7

The dot contribution scaled by the size of the system is idenHere, C(¢) does not give any significant phase shift when
tified with the scattering phase of the excitation off the dot,the Kondo energy scale is much smaller than the Coulomb
which gives the relation between the phase and the momeiateractionU. For | u,— wm|<<U, we can assume all of the
tum from the dot a$;=py. In adding an electron with spin leads are at the symmetric point. This makes it possible to
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take into account the essence of the physics associated witvo-lead systemd’ For a symmetric coupling \(;=- - -
the splitting of the Kondo resonance in a multiple-lead sys—=V,) and u;=---=uy, the matrix conductance is
tem. Then one can obtain a simple expression for the matrig,,,/Go=4(N—1)/N? and G,y /Go=—(2/N)?. The re-
conductance@,y = —ea#m,lm) from Eq.(7), (8), and(15). sultant matrix conductance agrees with that of a multilead
The matrix conductance in the multiple-lead Kondo-dot sys-duantum point-contact for free fermiofisThis unitary scat-
tem is given by tering limit shows the Fermi liquid nature of the multiple-
lead Kondo-dot system.
Note that the multiple-lead matrix conductance in Egs.

Gmm=— z Gmm (16) (16) and(17) shows clearly that a conductance peak for the
mAm transmission fromm to m’ is developed when the two
9 B 21-1 chemical potentials are tuned to be equal,= . As the
G mw = a2 |14+ | Hm A , chemical potential difference increases, the amplitude of the

4

(m#m’) mm’

conductance decreases. Ihdead system, if every chemical
(17) potential has a different value, the conductafgg,, versus
um has a total of thé&l— 1 conductance peaks, one at each of

— 2 i
where Go=2e7/h is the quantum of conductance, and e gher chemical potentials. The amplitude of the conduc-
Iy =VmVm /T This multiple-lead matrix conductance is 5o Gy VErsus u, has its maximum value fop,
the generalized expression of the conductance for the two;'u The maximum values ob.. .’s have a one-to-one
m’ - mm’

lead Kondo-dot system. It reduces to the conductance in th@orrespondence to the conductance peakS gf,. This be-

havior of the conductances implies that electrons from each
'Au=0.0T%' S lead participate in screening the local moment of the dot and
AP=0.5TY, —roeree take part in forming a single Kondo resonance at equilib-

1 rium. Increasing the difference between the chemical poten-
tials, the electrons from each of tileads have their own
Kondo resonances with the dot. Each resonance is character-
ized by a Kondo temperaturé ,, depending on the value
of the chemical potential of the lead. Since each lead creates
a single lead-dot Kondo resonance, tdead system hahl
lead-dot Kondo resonances. If the chemical potentials of two
of the leads are adjusted to be equal, then the two Kondo
resonances corresponding to these leads merge together in

TK,maX[Mm M

1.0

(a)

il Au=1.OT% ..........

0
AU=1.5Ty, e

L K -
v Ap=20Ty ----

Gyy [2¢7]

04

0.2

"""" * e Gy - Then this results in only a single transmission peak in

0.0

0 1 5 3 the conductanc&,,,. Therefore, an electron transport mea-
o surement in the two-lead system is able to capture only the

W/l . L

single transmission peak even though there are two lead-dot

Kondo resonances created by the two leads. Hence, the two-

lead system is not a good probe to observe the splitting of the

Kondo resonance by finite biases.

-3 2 -1

V. THREE-LEAD AND FOUR-LEAD SYSTEM

Before proceeding to the conclusion, we discuss the con-
ductance for the three leaddl€3) and the four leadsN
=4). The unitary transformation for the three-lead system is
given by the unitary matrix

Gyy [2¢°]

Vi V, V;
1 2 3 Us=—=| V2 a b |, (189
V3 b ¢

0
Wa/Tor

FIG. 2. Splitting of the Kondo resonance by multiple lea@s. where a=(—V1V§+V§\/F)/y b=(-V,V,Vs

Conductancéss; as a function of the chemical potentiak for a B S 2 2 . N2
quantum dot symmetrically coupléde.,V,=V,=V;) to the three V,Va\T)/y, and c=( V1V3+V2‘/F)/7 with y=V3

leads (N=3), A= pu,— 1. (b) Conductance ,, as a function of +V§ It can be obtained exphgtl_y under the necessary con-
the chemical potentiak, for a quantum dot symmetrically coupled dition we discussed above. Similarly, the unitary matix

to the four leadsN=4), Ap=py— 1= p3— . The temperature  for four leads can be determined.

is zero,U=100.0", andeq=—3.0I". TY is the Kondo temperature We plot the conductanc€;; as a function ofus for N

at equilibrium. Here, at equilibrium, all chemical potentials are set=3 and the conductan&g,, as a function ofu, for N=4 in

to be zero. Fig. 2(a) and (b), respectively. When all the leads are at the
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same chemical potentia(w=0), the amplitude of the con- A general expression for the matrix conductance from the
ductance is shown to be reduced as the number of leadstegrability has been obtained. The conductance for the
increases. The maximum amplitudes &g;/G,==8/9 and N-lead system showll—1 split Kondo peaks located &t
G44/Go=3/4. As the difference between the other chemical—1 different chemical potentials. This shows that a Kondo-
potentials,Au, become larger than the Kondo temperaturedot system with multiple leads provides a good probe to
Ty at equilibrium, the single peak @t =0 splits progres-  observe the nonequilibrium effects on the Kondo resonance
sively into two and three peaks for three and four leadspy a voltage bias in transport measurement.

respectively. Figure () shows that forA u=2Tg , the am- Note addedRecently, we became aware of work by Si-
plitudes of the split peaks reduce to around half the value ofnon and Affleck’® in which a similar conclusion of a unitary

that of the equilibrium Kondo peakA(u=0). The suppres- transformation was reached independently for two leads con-
sion of the Kondo resonance is on a voltage siile This  taining multichannels.

behavior agree qualitatively, but not quantitatively, with the
experimental results in Ref. 8.
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