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Quantum transport and integrability of the Anderson model for a quantum dot with multiple leads
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We show that an Anderson Hamiltonian describing a quantum dot connected to multiple leads is integrable.
A general expression for the nonlinear conductance is obtained by combining the Bethe ansatz exact solution
with Landauer-Bu¨ttiker theory. In the Kondo regime, a closed form expression is given for the matrix conduc-
tance at zero temperature and when all the leads are close to the symmetric point. A bias-induced splitting of
the Kondo resonance is possible for three or more leads. Specifically, forN leads, with each at a different
chemical potential, there can beN21 Kondo peaks in the conductance.
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I. INTRODUCTION

Since the first prediction1 and realization of Kondo phys
ics in a quantum dot~QD!,2 nonequilibrium effects on the
Kondo resonance due to a finite bias voltage across the
have attracted increasing attention. In the experiments,
zero bias peak of the differential conductances has been
served as a signature of the Kondo effect on electron tra
port through a QD. In the unitary scattering limit, observ
tions of perfect transmission3,4 provide further evidence fo
the Kondo effect in QD’s. The nonequilibrium density
states~DOS! of the dot has been predicted5 to exhibit a split-
ting of the Kondo peak due to a bias voltage applied betw
the source and the drain. This splitting has not been obse
in transport measurements. To observe the splitting of
Kondo resonance by a finite voltage bias, an experiment w
extra leads6,7 has been proposed. Very recently, such a sp
ting was observed in an experiment8 where a three-lead setu
was employed.

In a conventional bulk Kondo system9 ~e.g., a magnetic
impurity in a metal!, there is a single chemical potential an
the Kondo resonance in the DOS appears at the Fermi en
due to the formation of a singlet between the local mome
of the impurity and the conduction electrons. If the impur
has available a second conduction band to form sin
states, a second Kondo resonance in the DOS might be
pected to occur at the chemical potential of the second c
duction band. The splitting of the Kondo resonance of a Q
by the differential chemical potentials of the two leads th
seems to be reasonable. However, it is not still clear why
differential conductance has only a single peak at zero bia
experiments with two leads. Thus there arises a fundame
question associated with a Kondo resonance in a system
several chemical potentials that can be fabricated in na
cale electronic devices: Why have not the split Kondo pe
been seen in two-lead systems? To help answer this que
we consider a QD coupled to multiple leads. The QD
described by an Anderson model generalized to a multi
lead one. It will be shown that the multiple-lead Anders
model is integrable and exactly solvable by a unitary tra
formation and the Bethe ansatz.10–13 By using the exact so
lution, a general expression for the conductance of
N-lead system shows that the Kondo resonance at equ
0163-1829/2003/68~12!/125327~5!/$20.00 68 1253
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rium is split into N21 peaks by increasing the differenc
between the chemical potentials of the different leads. T
then clearly shows why only a single peak of the cond
tance occurs in the two-lead system.

This paper is organized as follows. In Sec. II, the mod
Hamiltonian is described and a unitary transformation is d
cussed for the integrability of the Hamiltonian. For th
N-lead system, the scattering matrix from integrable exc
tions is presented in Sec. III. By combining scattering amp
tudes from the Bethe ansatz exact solution with Landau
Büttiker theory, a differential matrix conductance is deriv
and the Kondo splitting peaks by finite biases are discus
in Sec. IV. As an example, three- and four-lead systems
considered in Sec. V. In Sec. VI, some final remarks will
given.

II. MODEL AND UNITARY TRANSFORMATION

We consider an Anderson model in whichN leads are
coupled to the QD, as in Fig. 1. The leads are descri

FIG. 1. A quantum dot~QD! coupled toN multiple leads.Vm is
the tunneling amplitude between themth lead and the QD.mm is
the chemical potential of themth lead. The leads are presente
under the unfolded formalism.
©2003 The American Physical Society27-1
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under theunfoldedformalism with fermions. Within this for-
malism, fermions incident on the dot (x50) from a lead
(x,0) are scattered away from the dot to leads (x.0). In
the continuum limit, the multiple-lead Anderson mod
Hamiltonian is given by

H52 i (
m51;s

N E
2`

`

dxcms
† ~x!]xcms~x!1(

s
«dds

†ds

1Un↑n↓1 (
m51;s

N

Vm@cms
† ~0!ds1H.c.#, ~1!

wherens5ds
†ds is the number of electrons of spins on the

dot andU is the on-site Coulomb repulsion.cms andds are
the annihilation operators with spins for electrons in the
leadm and the dot.(m is a sum over the multiple leads (m
51, . . . ,N). «d is the energy level on the dot. Here th
hopping amplitudes between the dot and the leadm, Vm , are
allowed to be arbitrary.

Previously, it has been shown that, for theN52 case, a
unitary ~Bogoliubov! transformation can be used to tran
form the Hamiltonian to a single-lead Anderso
Hamiltonian.16 We now generalize this to the case of gene
N. To do this, one performs a unitary transformation,c̃
5UNc, for the lead electrons, wherec5(c1 , . . . ,cN) and c̃
5( c̃1 , . . . ,c̃N). The components of theN3N matrix UN are
a function of the hopping amplitudes,Vm . UN should satisfy
UN

† UN5I . If ~i! (mVm@UN#mm85(m@UN
† #m8mVm , and ~ii !

(mVm@UN#mm85AG for m851 and 0 form8Þ1, one ob-
tains the one-lead Anderson Hamiltonian andN21 free fer-
mion Hamiltonians. Then aN3N unitary matrix for the mul-
tiple leads has a form satisfying with@UN#1m5Vm /AG and
G5(mVm

2 . For N.2, actually, there are more freedoms
choose a unitary matrix. The freedoms give us different m
trices for a unitary transformation acting only o
( c̃2 , . . . ,c̃N), but leavingc̃1 invariant, which does not affec
the physics. A similar unitary transformation was used
study negative resistance fluctuations in quantum H
conductors.14

As a consequence, the unitary transformation satisfy
such conditions decomposes the multiple-lead Hamilton
into N independent sub-Hamiltonians,H̃m , as

H5(
m

H̃m , ~2!

where

H̃15(
s

F2 i E
2`

`

dxc̃1s
† ~x!]xc̃1s~x!1«dds

†ds1Un↑n↓

1AG~ c̃1s
† ~0!ds1H.c.!G , ~3!

H̃m52 i(
s

E
2`

`

dxc̃ms
† ~x!]xc̃ms~x! for mP@2,N#.

~4!
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This is a generalization of theN52 case treated in Ref. 16
The transformed Hamiltonian can be solved exactly beca
the sub-Hamiltonian,H̃1, is the one-lead Anderson mode
that is exactly solvable via the Bethe ansatz.10–13

III. INTEGRABLE EXCITATIONS AND SCATTERING
AMPLITUDES

The scattering amplitudes of electronic excitations off t
QD coupled to theN leads can be calculated based on t
exact solution ofH̃1. In the transformedN leads, the inte-
grable excitations,$c̃m%, will scatter off the dot with some
pure phase shift with spins, d1

s(«), where in particular
dm

s («)50 for mP@2,N#. With the unfolded formalism, the
scattering can be described by the relation

c̃m~x.0!5eidm
s
c̃m~x,0!. ~5!

Equation~5! leads to the scattering amplitudesSmm8
s («) of

electronic excitations,$cm%, of energy« between leads in
the multiple-lead system. Assuming the relationcm

5(m8@UN#mm8c̃m8 , the scattering matrix is straightfor
wardly given by

Smm8
s

~«!5dmm812iGmm8e
id1

s/2sin
d1

s

2
, ~6!

whereGmm85@UP1U21#mm8 andP is a polarization matrix:
@Pm#mm51 and other entries are zero. FormÞm8, Smm8

s is a
transmission amplitudeTmm8

s from m8 to m. For m5m8,
Smm

s corresponds to a reflection amplitudeRmm
s from m to m.

From Gmm85Gm8m , Tmm8
s («)5Tm8m

s («) is automatically
preserved.

IV. DIFFERENTIAL MATRIX CONDUCTANCE

In the out-of-equilibrium case, the added chemical pot
tial term destroys the integrability of the model, which m
render the applicability of the Bethe ansatz approa
questionable.15 However, as argued by Konik an
co-workers16 ~see especially, Sec. V, Ref. 17! for the two-
lead case, as far as the computation of the nonequilibr
conductance is concerned, all we need to know is the dis
bution of particles in each of the leads, and the impact of
different chemical potentials on the scattering amplitud
Because the particles in different leads do not interact w
each other, one may compute the distribution of particles
different leads separately. That is, we may treat the prob
as if the particles are still in equilibrium for a certain lead
the corresponding different chemical potential. As for t
scattering, the only effect arising from the different chemic
potentials is an overall phase factors, which does not cont
ute to the Landauer-Bu¨ttiker conductance. Such a conside
ation makes it possible to apply the results extracted from
Bethe ansatz approach in the equilibrium case to the out
equilibrium conductance. Then the current and the cond
tance through the QD can be obtained by the Landau
Büttiker theory18 for quantum transport through nanodevice
7-2
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To describe scattering away from the Fermi energy and
culate the differential conductance, we employ the ansa16

verified in Refs. 19 and 20. The ansatz allows us to use
in-equilibrium scattering matrices to calculate the contrib
tion to the current of any given excitation. Konik and c
workers discussed the details of the implementation of
nonequilibrium computation in Ref. 17. WithTmm8

s («)
5Tm8m

s («), at zero temperature, the current in leadm is
given by

I m5
e

h (
m8Þm;s

E
mm8

mm
d«uTmm8

s
~«,$mm%!u2, ~7!

wheremm is the chemical potential at the leadm and

uTmm8
s

~«,$mm%!u254Gmm8
2 sin2F1

2
d1

s~«,$mm%!G . ~8!

To determined1, we solveH̃1 via the Bethe ansatz for th
one-lead Anderson model. The integrability ofH̃1 leads to a
set of quantization conditions identical to that of the one-le
Anderson model. Single particle excitations with mome
$kj% are identified by an appropriate basis. Scattered par
eigenstates from the dot picks up thebare phased(k)5
22 tan21@G/(k2«d)#. Calculating two particle eigenstate
makes it possible to get the scattering matrices of excitatio
The scattering matrices satisfying a Yang-Baxter relations
are identical to that of the one-lead Anderson model. The
set of Ne multi-particle eigenstates carrying total spinSz
5Ne/22M should satisfy the quantization conditions10–12as

eik jL1 id(kj )5 )
a51

M
g~kj !2la1 i /2

g~kj !2la2 i /2
,

~9!

)
b51

M
la2lb1 i

la2lb2 i
52)

j 51

Ne g~kj !2la2 i /2

g~kj !2la1 i /2
,

where g(k)5(k2«d2U/2)2/2UG and M characterizes the
spin projection of the system with the auxiliary paramete
$la%. For «d.2U/2, then,Ne total momentak’s form an
Ne particle ground state configuration.Ne22M of Ne mo-
mentak’s is real and 2M is complex viaM real la’s. The
2M complex momenta are given byka

65x(la)6 iy(la)
with x(l)5U/21«d2AUG@l1(l211/4)1/2#1/2 and y(l)
5AUG@2l1(l211/4)1/2#1/2.

According to Andrei’s procedure for determining the m
mentum,p, of an added electron in a periodic system of s
L,21,22 the quantization condition of the system leads top
52pn/L. Contributions to the momentum come from th
bulk of the system and the dot:

p52pn/L5pbulk1pd /L.

The dot contribution scaled by the size of the system is id
tified with the scattering phase of the excitation off the d
which gives the relation between the phase and the mom
tum from the dot asd15pd . In adding an electron with spin
12532
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s to the system, then, the electron scattering phase shift
two contributions from the charge,pQ, and the spin sectors
pS,16 as given by

d1
s5pd

s5pd
Q~k!1pd

S~l!. ~10!

The electronic scattering phase shifts are related to the
sity of statesrd(k) andsd(l) by the following equations:

pd
Q~k!5d~k!1E

q

q̃
dl@u1~g~k!2l!22p#sd~l!, ~11!

pd
S~k!5 d̃~k!1E

q

q̃
dl8@u2~g~k!2l8!22p#sd~l8!

1E
2D

B

dk@u1~l2g~k!!22p#rd~k!, ~12!

whered̃52 Re@d(x(l)1 iy(l)#. q/B are the Fermi surface
of the seas ofk and l excitations whileq̃ is related to the
band cutoff,D. Hereu1,2 for describing the dot momentum
should be chosen to ensure thatpd

Q(k→2`)5pd
S(l→`)

50. Moreover, the dot momenta are simply related to
dot density of states:

]kpd
Q~k!52prd~k!, and]lpd

S~l!522psd~l!. ~13!

Integrating the density of states gives us the dot mome
Consequently, the scattering phase shift is given by

d1
s52pE

2D

B

dkrd~k!12pE
q

q̃
dl8sd~l8!. ~14!

This phase shift satisfies the Langreth-Friedel sum rule,d1
s

52pns , relating the phase shift to the total number of ele
tronsnd in the dot.23

To obtain the matrix conductance of the multiple-lead s
tem away from the symmetric point («d2mm52U/2), we
need to do a numerical calculation for the associated inte
equations. But at the symmetric point the scattering ph
shift is obtained by using an exact expression forrd(k,0)
~Ref. 13! and a direct relation between the phase shifts
the electron with spin2s and the hole with spins from a
property of electron-hole transformation based on the SU~2!
spin symmetry. The phase shift is given by17

d1~«!5
3

2
p2sin21F4TK,m

2 2p2~«2mm!2

4TK,m
2 1p2~«2mm!2G1C~«!,

~15!

where the Kondo temperature for a lead at chemical poten
mm is

TK,m5AUG

2
expF p

2GU
@~«d2mm!~«d2mm1U !2G2#G .

Here, C(«) does not give any significant phase shift wh
the Kondo energy scale is much smaller than the Coulo
interactionU. For umm2mm8u!U, we can assume all of the
leads are at the symmetric point. This makes it possible
7-3
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take into account the essence of the physics associated
the splitting of the Kondo resonance in a multiple-lead s
tem. Then one can obtain a simple expression for the ma
conductance (Gmm852e]mm8

I m) from Eq.~7!, ~8!, and~15!.
The matrix conductance in the multiple-lead Kondo-dot s
tem is given by

Gmm52 (
m8Þm

Gmm8 , ~16!

G mm8
(mÞm8)

524G0Gmm8
2 F11

p2

4 S mm2mm8

TK,max[mm ,mm8]
D 2G21

,

~17!

where G052e2/h is the quantum of conductance, an
Gmm85VmVm8 /G. This multiple-lead matrix conductance
the generalized expression of the conductance for the t
lead Kondo-dot system. It reduces to the conductance in

FIG. 2. Splitting of the Kondo resonance by multiple leads.~a!
ConductanceG33 as a function of the chemical potentialm3 for a
quantum dot symmetrically coupled~i.e., V15V25V3) to the three
leads (N53), Dm5m22m1. ~b! ConductanceG44 as a function of
the chemical potentialm4 for a quantum dot symmetrically couple
to the four leads (N54), Dm5m22m15m32m2. The temperature
is zero,U5100.0G, and«d523.0G. TK

0 is the Kondo temperature
at equilibrium. Here, at equilibrium, all chemical potentials are
to be zero.
12532
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two-lead system.17 For a symmetric coupling (V15•••

5VN) and m15•••5mN , the matrix conductance is
Gmm/G054(N21)/N2 and Gmm8 /G052(2/N)2. The re-
sultant matrix conductance agrees with that of a multile
quantum point-contact for free fermions.24 This unitary scat-
tering limit shows the Fermi liquid nature of the multiple
lead Kondo-dot system.

Note that the multiple-lead matrix conductance in Eq
~16! and ~17! shows clearly that a conductance peak for t
transmission fromm to m8 is developed when the two
chemical potentials are tuned to be equal,mm5mm8 . As the
chemical potential difference increases, the amplitude of
conductance decreases. In aN-lead system, if every chemica
potential has a different value, the conductanceGmm versus
mm has a total of theN21 conductance peaks, one at each
the other chemical potentials. The amplitude of the cond
tance Gmm8 versus mm has its maximum value formm
5mm8 . The maximum values ofGmm8’s have a one-to-one
correspondence to the conductance peaks ofGmm. This be-
havior of the conductances implies that electrons from e
lead participate in screening the local moment of the dot
take part in forming a single Kondo resonance at equi
rium. Increasing the difference between the chemical pot
tials, the electrons from each of theN leads have their own
Kondo resonances with the dot. Each resonance is chara
ized by a Kondo temperature,TK,m , depending on the value
of the chemical potential of the lead. Since each lead cre
a single lead-dot Kondo resonance, theN-lead system hasN
lead-dot Kondo resonances. If the chemical potentials of
of the leads are adjusted to be equal, then the two Ko
resonances corresponding to these leads merge togeth
Gmm8 . Then this results in only a single transmission peak
the conductanceGmm. Therefore, an electron transport me
surement in the two-lead system is able to capture only
single transmission peak even though there are two lead
Kondo resonances created by the two leads. Hence, the
lead system is not a good probe to observe the splitting of
Kondo resonance by finite biases.

V. THREE-LEAD AND FOUR-LEAD SYSTEM

Before proceeding to the conclusion, we discuss the c
ductance for the three leads (N53) and the four leads (N
54). The unitary transformation for the three-lead system
given by the unitary matrix

U35
1

AG S V1 V2 V3

V2 a b

V3 b c
D , ~18!

where a5(2V1V2
21V3

2AG)/g, b5(2V1V2V3

2V2V3AG)/g, and c5(2V1V3
21V2

2AG)/g with g5V2
2

1V3
2. It can be obtained explicitly under the necessary c

dition we discussed above. Similarly, the unitary matrixU4
for four leads can be determined.

We plot the conductanceG33 as a function ofm3 for N
53 and the conductanceG44 as a function ofm4 for N54 in
Fig. 2~a! and ~b!, respectively. When all the leads are at t
t

7-4
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same chemical potential (Dm50), the amplitude of the con
ductance is shown to be reduced as the number of le
increases. The maximum amplitudes areG33/G058/9 and
G44/G053/4. As the difference between the other chemi
potentials,Dm, become larger than the Kondo temperatu
TK

0 at equilibrium, the single peak atDm50 splits progres-
sively into two and three peaks for three and four lea
respectively. Figure 2~a! shows that forDm.2TK

0 , the am-
plitudes of the split peaks reduce to around half the value
that of the equilibrium Kondo peak (Dm50). The suppres-
sion of the Kondo resonance is on a voltage scaleTK

0 . This
behavior agree qualitatively, but not quantitatively, with t
experimental results in Ref. 8.

VI. CONCLUSIONS

By using a unitary transformation and the Bethe ans
the multiple-lead Anderson model is shown to be integrab
ei-

a

en
.

er
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e

y
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A general expression for the matrix conductance from
integrability has been obtained. The conductance for
N-lead system showsN21 split Kondo peaks located atN
21 different chemical potentials. This shows that a Kond
dot system with multiple leads provides a good probe
observe the nonequilibrium effects on the Kondo resona
by a voltage bias in transport measurement.

Note added.Recently, we became aware of work by S
mon and Affleck,25 in which a similar conclusion of a unitary
transformation was reached independently for two leads c
taining multichannels.
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