128 research outputs found

    User Review Analysis of Mobile English Vocabulary Learning

    Get PDF
    More and more language learners today rely on mobile assisted vocabulary learning to expand their grasp of words. Against this background, reviews left by target users are impactful in a language learning app market because online reviews play roles as a decision-making tool used by prospects before committing to any service provider and as a channel through which a mobile app developer understand users’ current expectations and their using and learning experience in depth. The aim of this study is to explore the issues users concern the most in app-based vocabulary learning and provide suggestions to mobile app developers, hoping they leverage the advice to perfect apps’ performance and gain a competitive edge in a booming app market

    Dynamic capillary pressure analysis of tight sandstone based on digital rock model

    Get PDF
    In recent studies, dynamic capillary pressure has shown significant impacts on the flow behaviors in porous media under transient flow condition. However, the effect of dynamic capillary pressure effect on tight sandstone is still not very clear. Since lattice Boltzmann method (LBM) is a very promising and widely used method in analyzing flow behaviors, therefore, a two-phase D3Q27 LBM model is adopted in this paper to simulate the flow behaviors and analyze the dynamic capillary pressure effect in tight sandstone. Moreover, a new pore segmentation method for tight sandstone base on U-net deep learning model is implemented in this study to improve the pore boundary qualities of pore space, which is crucial for two-phase LBM simulation of tight sandstone. A total of 3800 3D sub-volume data sets extracted from computed tomography data of 19 tight sandstone samples are selected as ground truth data to train the network and segment the pore space afterward. The simulation results based on the segmented digital rock model, show that nonwetting phase fluid prefer the path with lower dynamic capillary pressure in the seepage process before breaking through the porous model. Furthermore, the increase of injection rate causes the saturation changes more quickly, injection rate also shows apparent positive correlation relationship with capillary pressure, which implies that dynamic capillary pressure effect also exists in tight sandstone, and LBM based two-phase flow simulation could be used to quantitatively analyze such effect in tight sandstone.Cited as: Cao, Y., Tang, M., Zhang, Q., Tang, J., Lu, S. Dynamic capillary pressure analysis of tight sandstone based on digital rock model. Capillarity, 2020, 3(2): 28-35, doi: 10.46690/capi.2020.02.0

    Evaluation of MiR-181a as a potential therapeutic target in osteoarthritis

    Get PDF
    Purpose: To investigate microRNA-181 (miR-181) as a potential therapeutic target in osteoarthritis (OA).Methods: MiR-181 expression was evaluated in articular cartilage samples obtained from OA patients undergoing knee arthroplasty and non-OA (control) patients undergoing other orthopedic procedures. Following the isolation of total RNA, miRNA and mRNA expression was determined by real timepolymerase chain reaction (RT-PCR). Luciferase reporter assay and miRNA mimic or inhibitor were then used to establish the molecular target of miR-181 in chondrocytes.Results: miR-181 family members, namely, miR-181a, miR-181c and miR-181d were significantly upregulated in articular cartilage obtained from OA patients compared to non-OA control subjects. However, no significant difference in up-regulation of miR-181b expression. B-cell lymphoma 2 (BCL2), a putative target of the miR-181 family, was significantly down-regulated in OA patients compared to control subjects. Furthermore, luciferase reporter assay confirmed direct interaction between miR-181a and three prime untranslated region The 3’UTR of BCL2 in chondrocytes. Transfection of miR-181 mimic resulted in BCL2 suppression in chondrocytes. On the other hand, transfection of miR-181 inhibitor led to increased BCL2 expression and decreased interleukin 1-beta (IL1-β) induced apoptosis.Conclusion: miR-181 is differentially expressed in articular cartilage of OA patients and leads to downregulation of BCL2, a regulator of apoptosis. Therefore, miR-181 may be a potential therapeutic target in the treatment of OA.Keywords: MicroRNA, Osteoarthritis, Apoptosis, B-cell lymphoma 2, Transfection, Chondrocyte

    Hyperin up-regulates miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells

    Get PDF
    Objective. To investigate the effects of Hyperin (Hyp) on osteogenic differentiation of MC3T3E1 cells. Methods. Differentially expressed miRNA was screened by miRNA Microarray. miR-7031-5P overexpression and knockdown MC3T3-E1 cell models were constructed by transfecting miR-7031-5P mimics and inhibitor. Alizarin red staining (ARS) assay was used to observe the formation of mineralized nodules in MC3T3-E1 cells. ALP activity was detected by using ALP detection kit. Western blot assay was used to examine the changes in osteogenic differentiation-related proteins. The relationship between miR-7031-5P and Wnt7a was revealed by dual luciferase report experiments. Results. We found that miR-7031-5P was upregulated in MC3T3-E1 cells after Hyp treatment. The results indicated that compared with the untreated group, Hyp promoted the formation of mineralized nodules and the alkaline phosphatase (ALP) activity of MC3T3-E1 cells via overexpressing miR-7031-5P. Besides, elevated miR-7031-5P increased OPN, COL1A1, and Runx2 mRNA expression. More importantly, Wnt7a was identified as the downstream target gene of miR-70315P promoting osteogenic differentiation of MC3T3-E1 cells. Conclusions. Hyp up-regulated miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells by targeting Wnt7

    Signature of the coexistence of ferromagnetism and superconductivity at KTaO3_3 heterointerfaces

    Full text link
    The coexistence of superconductivity and ferromagnetism is a long-standing issue in the realm of unconventional superconductivity due to the antagonistic nature of these two ordered states. Experimentally identifying and characterizing novel heterointerface superconductors that coexist with magnetism is challenging. Here, we report the experimental observation of long-range ferromagnetic order at the verge of two-dimensional superconductivity at KTaO3_3 heterointerfaces. Remarkably, we observe in-plane magnetization hysteresis loop persisting up to room temperature with direct current superconducting quantum interference device measurements. Furthermore, first-principles calculations suggest that the observed robust ferromagnetism is attributed to the presence of oxygen vacancies that localize electrons in nearby Ta 5dd states. Our findings not only indicate KTaO3_3 heterointerfaces as unconventional superconductors with time-reversal symmetry breaking, but also inject a new momentum to the study of the delicate interplay between superconductivity and magnetism boosted by strong spin-orbit coupling inherent to the heavy Ta in 5dd orbitals of KTaO3_3 heterointerfaces.Comment: 7 pages, 3 figure

    Highly directional and coherent emission from dark excitons enabled by bound states in the continuum

    Full text link
    A double-edged sword in two-dimensional material science and technology is an optically forbidden dark exciton. On the one hand, it is fascinating for condensed matter physics, quantum information processing, and optoelectronics due to its long lifetime. On the other hand, it is notorious for being optically inaccessible from both excitation and detection standpoints. Here, we provide an efficient and low-loss solution to the dilemma by reintroducing photonics bound states in the continuum (BICs) to manipulate dark excitons in the momentum space. In a monolayer tungsten diselenide under normal incidence, we observed a giant enhancement with an enhancement factor of ~3,100 for dark excitons enabled by transverse magnetic BICs with intrinsic out-of-plane electric fields. By further employing widely tunable Friedrich-Wintgen BICs, we demonstrated highly directional emission from the dark excitons with a divergence angle of merely 7 degrees. We found that the directional emission is coherent at room temperature, unambiguously shown in polarization analyses and interference measurements. Therefore, the BICs reintroduced as a momentum-space photonic environment could be an intriguing platform to reshape and redefine light-matter interactions in nearby quantum materials, such as low-dimensional materials, otherwise challenging or even impossible to achieve

    Task-driven data fusion for additive manufacturing: framework, approaches, and case studies

    Get PDF
    Additive manufacturing (AM) has been envisioned as a critical technology for the next industrial revolution. Due to the advances in data sensing and collection technologies, a large amount of data, generated from multiple sources in AM production, becomes available for relevant analytics to improve process reliability, repeatability, and part quality. However, AM processes occur over a wide range of spatial and temporal scales where the data generally involves different types, dimensions and structures, leading to difficulties when integrating and then analysing. Hence, in what way and how to integrate the heterogeneous data or merge the spatial and temporal information lead to significant challenges in data analytics for AM systems. This paper proposed a task-driven data fusion framework that enables the integration of heterogeneous data from different sources and modalities based on tasks to support decision-making activities. In this framework, the data analytics activities involved in the task are identified in the first place. Then, the data required for the task is identified, collected, and characterised. Finally, data fusion techniques are employed and applied based on the characteristics of the data for integration to support data analytics. The fusion techniques that best fit the task requirements are selected as the final fusion approach. Case studies on different research directions of AM, including AM energy consumption prediction, mechanical properties prediction of additively manufactured lattice structures, and investigation of remelting process on part density, were carried out to demonstrate the feasibility and effectiveness of the proposed framework and approaches

    Endophytic Colletotrichum species from Dendrobium spp. in China and Northern Thailand

    Get PDF
    Species of Colletotrichum are commonly found in many plant hosts as pathogens, endophytes and occasionally saprobes. Twenty-two Colletotrichum strains were isolated from three Dendrobium species – D. cariniferum, D. catenatum and D. harveyanum, as well as three unidentified species. The taxa were identified using morphological characterisation and phylogenetic analyses of ITS, GAPDH, ACT and ß–tubulin sequence data. This is the first time to identify endophytic fungi from Dendrobium orchids using the above method. The known species, Colletotrichum boninense, C. camelliae-japonicae, C. fructicola, C. jiangxiense and C. orchidophilum were identified as fungal endophytes of Dendrobium spp., along with the new species, C. cariniferi, C. chiangraiense, C. doitungense, C. parallelophorum and C. watphraense, which are introduced in this paper. One strain is recorded as an unidentified species. Corn meal agar is recommended as a good sporulation medium for Colletotrichum species. This is the first report of fungal endophytes associated with Dendrobium cariniferum and D. harveyanum. Colletotrichum camelliae-japonicae, C. jiangxiense, and C. orchidophilum are new host records for Thailand

    GWAS and co-expression network combination uncovers multigenes with close linkage effects on the oleic acid content accumulation in Brassica napus

    Get PDF
    Background: Strong artificial and natural selection causes the formation of highly conserved haplotypes that harbor agronomically important genes. GWAS combination with haplotype analysis has evolved as an effective method to dissect the genetic architecture of complex traits in crop species. Results: We used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with oleic acid (C18:1) in rapeseed. Six haplotype regions were identified as significantly associated with oleic acid (C18:1) that mapped to chromosomes A02, A07, A08, C01, C02, and C03. Additionally, whole-genome sequencing of 50 rapeseed accessions revealed three genes (BnmtACP2-A02, BnABCI13-A02 and BnECI1-A02) in the A02 chromosome haplotype region and two genes (BnFAD8-C02 and BnSDP1-C02) in the C02 chromosome haplotype region that were closely linked to oleic acid content phenotypic variation. Moreover, the co-expression network analysis uncovered candidate genes from these two different haplotype regions with potential regulatory interrelationships with oleic acid content accumulation. Conclusions: Our results suggest that several candidate genes are closely linked, which provides us with an opportunity to develop functional haplotype markers for the improvement of the oleic acid content in rapeseed
    corecore