31,094 research outputs found
Liquid-gas Phase Transition in Strange Hadronic Matter with Weak Y-Y Interaction
The liquid-gas phase transition in strange hadronic matter is reexamined by
using the new parameters about the interaction deduced from
recent observation of double hypernucleus. The
extended Furnstahl-Serot-Tang model with nucleons and hyperons is utilized. The
binodal surface, the limit pressure, the entropy, the specific heat capacity
and the Caloric curves are addressed. We find that the liquid-gas phase
transition can occur more easily in strange hadronic matter with weak Y-Y
interaction than that of the strong Y-Y interaction.Comment: 10 pages, 7 figure
Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Chemical Reactions
Chemical reaction systems operating in nonequilibrium open-system states
arise in a great number of contexts, including the study of living organisms,
in which chemical reactions, in general, are far from equilibrium. Here we
introduce a theorem that relates forward and re-verse fluxes and free energy
for any chemical process operating in a steady state. This rela-tionship, which
is a generalization of equilibrium conditions to the case of a chemical process
occurring in a nonequilibrium steady state, provides a novel equivalent
definition for chemical reaction free energy. In addition, it is shown that
previously unrelated theories introduced by Ussing and Hodgkin and Huxley for
transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks
for entropy production in microscopically reversible systems, are united in a
common framework based on this relationship.Comment: 11 page
Resonant Conversion of Massless Neutrinos in Supernovae
It has been noted for a long time that, in some circumstances, {\sl massless}
neutrinos may be {\sl mixed} in the leptonic charged current. Conventional
neutrino oscillation searches in vacuum are insensitive to this mixing. We
discuss the effects of resonant massless-neutrino conversions in the dense
medium of a supernova. In particular, we show how the detected
energy spectra from SN1987a and the supernova -process nucleosynthesis may
be used to provide very stringent constraints on the mixing of {\sl massless}
neutrinos.Comment: latex file, 20 pages, including 3 postscript figure
Stochastic Physics, Complex Systems and Biology
In complex systems, the interplay between nonlinear and stochastic dynamics,
e.g., J. Monod's necessity and chance, gives rise to an evolutionary process in
Darwinian sense, in terms of discrete jumps among attractors, with punctuated
equilibrium, spontaneous random "mutations" and "adaptations". On an
evlutionary time scale it produces sustainable diversity among individuals in a
homogeneous population rather than convergence as usually predicted by a
deterministic dynamics. The emergent discrete states in such a system, i.e.,
attractors, have natural robustness against both internal and external
perturbations. Phenotypic states of a biological cell, a mesoscopic nonlinear
stochastic open biochemical system, could be understood through such a
perspective.Comment: 10 page
COMPUTER SIMULATION OF "SPLASH CONTROL IN COMPETITIVE DIVING
The purpose of the study was to examine the relationship between the hand pattern and the water splash height during a diver's entry using a computer simulation method. A physical and mathematical model of the impact of a wedged solid object with an ideal fluid was developed. The motion equation (interaction function of solid and fluid) of the solid was established with satisfaction of control functions and initial boundary conditions of the fluid. A finite element method was used to simulate the impact process, with the wedge angle changed from 4" to 80- during the impact. The results suggested that the fluid splash height is inversely proportional to the wedge angle. The "splash control" technique derived from the simulation was also applied in training professional divers and positive results were obtained
SS Ari: a shallow-contact close binary system
Two CCD epochs of light minimum and a complete R light curve of SS Ari are
presented. The light curve obtained in 2007 was analyzed with the 2003 version
of the W-D code. It is shown that SS Ari is a shallow contact binary system
with a mass ratio and a degree of contact factor f=9.4(\pm0.8%). A
period investigation based on all available data shows that there may exist two
distinct solutions about the assumed third body. One, assuming eccentric orbit
of the third body and constant orbital period of the eclipsing pair results in
a massive third body with and P_3=87.00.278M_{\odot}$. Both of the cases
suggest the presence of an unseen third component in the system.Comment: 28 pages, 9 figures and 5 table
Half metallic digital ferromagnetic heterostructure composed of a -doped layer of Mn in Si
We propose and investigate the properties of a digital ferromagnetic
heterostructure (DFH) consisting of a -doped layer of Mn in Si, using
\textit{ab initio} electronic-structure methods. We find that (i) ferromagnetic
order of the Mn layer is energetically favorable relative to antiferromagnetic,
and (ii) the heterostructure is a two-dimensional half metallic system. The
metallic behavior is contributed by three majority-spin bands originating from
hybridized Mn- and nearest-neighbor Si- states, and the corresponding
carriers are responsible for the ferromagnetic order in the Mn layer. The
minority-spin channel has a calculated semiconducting gap of 0.25 eV. Analysis
of the total and partial densities of states, band structure, Fermi surfaces
and associated charge density reveals the marked two-dimensional nature of the
half metallicity. The band lineup is found to be favorable for retaining the
half metal character to near the Curie temperature (). Being Si based
and possibly having a high as suggested by an experiment on dilutely
doped Mn in Si, the heterostructure may be of special interest for integration
into mature Si technologies for spintronic applications.Comment: 4 pages, 4 figures, Revised version, to appear in Phys. Rev. Let
Quantum Chaos of Bogoliubov Waves for a Bose-Einstein Condensate in Stadium Billiards
We investigate the possibility of quantum (or wave) chaos for the Bogoliubov
excitations of a Bose-Einstein condensate in billiards. Because of the mean
field interaction in the condensate, the Bogoliubov excitations are very
different from the single particle excitations in a non-interacting system.
Nevertheless, we predict that the statistical distribution of level spacings is
unchanged by mapping the non-Hermitian Bogoliubov operator to a real symmetric
matrix. We numerically test our prediction by using a phase shift method for
calculating the excitation energies.Comment: minor change, 4 pages, 4 figures, to appear in Phys. Rev. Let
A Mechanochemical Model of Cell Reorientation on Substrates under Cyclic Stretch
published_or_final_versio
- …