1,942 research outputs found

    Trehalose production by permeabilized cells

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Computational Complexity of Atomic Chemical Reaction Networks

    Full text link
    Informally, a chemical reaction network is "atomic" if each reaction may be interpreted as the rearrangement of indivisible units of matter. There are several reasonable definitions formalizing this idea. We investigate the computational complexity of deciding whether a given network is atomic according to each of these definitions. Our first definition, primitive atomic, which requires each reaction to preserve the total number of atoms, is to shown to be equivalent to mass conservation. Since it is known that it can be decided in polynomial time whether a given chemical reaction network is mass-conserving, the equivalence gives an efficient algorithm to decide primitive atomicity. Another definition, subset atomic, further requires that all atoms are species. We show that deciding whether a given network is subset atomic is in NP\textsf{NP}, and the problem "is a network subset atomic with respect to a given atom set" is strongly NP\textsf{NP}-Complete\textsf{Complete}. A third definition, reachably atomic, studied by Adleman, Gopalkrishnan et al., further requires that each species has a sequence of reactions splitting it into its constituent atoms. We show that there is a polynomial-timeย algorithm\textbf{polynomial-time algorithm} to decide whether a given network is reachably atomic, improving upon the result of Adleman et al. that the problem is decidable\textbf{decidable}. We show that the reachability problem for reachably atomic networks is Pspace\textsf{Pspace}-Complete\textsf{Complete}. Finally, we demonstrate equivalence relationships between our definitions and some special cases of another existing definition of atomicity due to Gnacadja

    In vitro test of external Qigong

    Get PDF
    BACKGROUND: Practitioners of the alternative medical practice 'external Qigong' generally claim the ability to emit or direct "healing energy" to treat patients. We investigated the ability of experienced Qigong practitioners to enhance the healthy growth of cultured human cells in a series of studies, each following a rigorously designed protocol with randomization, blinding and controls for variability. METHODS: Qigong practitioners directed healing intentionality toward normal brain cell cultures in a basic science laboratory. Qigong treatments were delivered for 20 minutes from a minimum distance of 10 centimeters. Cell proliferation was measured by a standard colony-forming efficiency (CFE) assay and a CFE ratio (CFE for treated samples/CFE for sham samples) was the dependent measure for each experiment. RESULTS: During a pilot study (8 experiments), a trend of increased cell proliferation in Qigong-treated samples (CFE Qigong/sham ratios > 1.0) was observed (P = 0.162). In a formal study (28 experiments), a similar trend was observed, with Qigong-treated samples showing on average more colony formation than sham samples (P = 0.036). In a replication study (60 experiments), no significant difference between Qigong-treated samples and sham samples was observed (P = 0.465). CONCLUSION: We observed an apparent increase in the proliferation of cultured cells following external Qigong treatment by practitioners under strictly controlled conditions, but we did not observe this effect in a replication study. These results suggest the need for more controlled and thorough investigation of external Qigong before scientific validation is claimed

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ฯˆโ€ฒโ†’ฯ€+ฯ€โˆ’J/ฯˆ(J/ฯˆโ†’ฮณppห‰)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06ร—1081.06\times 10^8 ฯˆโ€ฒ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppห‰p\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861โˆ’13+6(stat)โˆ’26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is ฮ“<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer

    Get PDF
    Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Locked Nucleic Acid Pentamers as Universal PCR Primers for Genomic DNA Amplification

    Get PDF
    Background: Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can save a lot of time, cost and labor compared to traditional single reaction detection methods. However, the multiplexing method currently used requires precise handiwork and many complicated steps, making a new, simpler technique desirable. Oligonucleotides containing locked nucleic acid residues are an attractive tool because they have strong affinities for their complementary targets, they have been used to avoid dimer formation and mismatch hybridization and to enhance efficient priming. In this study, we aimed to investigate the use of locked nucleic acid pentamers for genomic DNA amplification and multiplex genotyping. Results: We designed locked nucleic acid pentamers as universal PCR primers for genomic DNA amplification. The locked nucleic acid pentamers were able to prime amplification of the selected sequences within the investigated genomes, and the resulting products were similar in length to those obtained by restriction digest. In Real Time PCR of genomic DNA from three bacterial species, locked nucleic acid pentamers showed high priming efficiencies. Data from bias tests demonstrated that locked nucleic acid pentamers have equal affinities for each of the six genes tested from the Klebsiella pneumoniae genome. Combined with suspension array genotyping, locked nucleic acid pentamer-based PCR amplification was able to identify a total of 15 strains, including 3 species of bacteria, by gene- and species-specific probes. Among the 32 specie

    OPCML Is a Broad Tumor Suppressor for Multiple Carcinomas and Lymphomas with Frequently Epigenetic Inactivation

    Get PDF
    Background: Identification of tumor suppressor genes (TSGs) silenced by CpG methylation uncovers the molecular mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common multiple tumors including nasopharyngeal carcinoma (NPC). OPCML, located at 11q25, is one of the downregulated genes we identified through digital expression subtraction. Methodology/Principal Findings: Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast, cervix, prostate), lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma) and primary tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression of OPCML led to significant inhibition of both anchorage-dependent and -indendent growth of carcinoma cells with endogenous silencing. Conlusions/Significance: Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies. ยฉ 2008 Cui et al.published_or_final_versio

    Grape Seed Proanthocyanidins Inhibit the Invasiveness of Human HNSCC Cells by Targeting EGFR and Reversing the Epithelial-To-Mesenchymal Transition

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is responsible for approximately 20,000 deaths per year in the United States. Most of the deaths are due to the metastases. To develop more effective strategies for the prevention of metastasis of HNSCC cells, we have determined the effect of grape seed proanthocyanidins (GSPs) on the invasive potential of HNSCC cell and the mechanisms underlying these effects using OSC19 cells as an in vitro model. Using cell invasion assays, we established that treatment of the OSC19 cells with GSPs resulted in a dose-dependent inhibition of cell invasion. EGFR is over-expressed in 90% of HNSCCs and the EGFR inhibitors, erlotinib and gefitinib, are being explored as therapies for this disease. We found that GSPs treatment reduced the levels of expression of EGFR in the OSC19 cells as well as reducing the activation of NF-ฮบB/p65, a downstream target of EGFR, and the expression of NF-ฮบB-responsive proteins. GSPs treatment also reduced the activity of ERK1/2, an upstream regulator of NF-ฮบB and treatment of the cells with caffeic acid phenethyl ester, an inhibitor of NF-ฮบB, inhibited cell invasion. Overexpression of EGFR and high NF-ฮบB activity play a key role in the epithelial-to-mesenchymal transition, which is of critical importance in the processes underlying metastasis, and we found treatment with GSPs enhanced the levels of epithelial (E-cadherin, cytokeratins and desmoglein-2) and reduced the levels of mesenchymal (vimentin, fibronectin, N-cadherin and Slug) biomarkers in the OSC19 cells. These results indicate that GSPs have the ability to inhibit HNSCC cell invasion, and do so by targeting the expression of EGFR and activation of NF-ฮบB as well as inhibiting the epithelial-to-mesenchymal transition
    • โ€ฆ
    corecore