56,110 research outputs found
Probing the excited-state quantum phase transition through statistics of Loschmidt echo and quantum work
By analyzing the probability distributions of the Loschmidt echo (LE) and
quantum work, we examine the nonequilibrium effects of a quantum many-body
system, which exhibits an excited-state quantum phase transition (ESQPT).
We find that depending on the value of the controlling parameter the
distribution of the LE displays different patterns.
At the critical point of the ESQPT, both the averaged LE and the averaged
work show a cusplike shape.
Furthermore, by employing the finite-size scaling analysis of the averaged
work, we obtain the critical exponent of the ESQPT.
Finally, we show that at the critical point of ESQPT the eigenstate is a
highly localized state, further highlighting the influence of the ESQPT on the
properties of the many-body system.Comment: 10 pages, 13 figures; accepted for publication in Physical Review
Generalized Haldane Equation and Fluctuation Theorem in the Steady State Cycle Kinetics of Single Enzymes
Enyzme kinetics are cyclic. We study a Markov renewal process model of
single-enzyme turnover in nonequilibrium steady-state (NESS) with sustained
concentrations for substrates and products. We show that the forward and
backward cycle times have idential non-exponential distributions:
\QQ_+(t)=\QQ_-(t). This equation generalizes the Haldane relation in
reversible enzyme kinetics. In terms of the probabilities for the forward
() and backward () cycles, is shown to be the
chemical driving force of the NESS, . More interestingly, the moment
generating function of the stochastic number of substrate cycle ,
follows the fluctuation theorem in the form of
Kurchan-Lebowitz-Spohn-type symmetry. When $\lambda$ = $\Delta\mu/k_BT$, we
obtain the Jarzynski-Hatano-Sasa-type equality:
1 for all , where is the fluctuating chemical work
done for sustaining the NESS. This theory suggests possible methods to
experimentally determine the nonequilibrium driving force {\it in situ} from
turnover data via single-molecule enzymology.Comment: 4 pages, 3 figure
Extended mapping and characteristics techniques for inverse aerodynamic design
Some ideas for using hodograph theory, mapping techniques and methods of characteristics to formulate typical aerodynamic design boundary value problems are developed. The inverse method of characteristics is shown to be a fast tool for design of transonic flow elements as well as supersonic flows with given shock waves
Recommended from our members
Dynamic Behavior of Precast Concrete Beam-Column Sub-Assemblages with High Performance Connections Subjected to Sudden Column Removal Scenario
Unbonded posttensioned precast concrete (UPPC) structure has shown its excellent aseismic performance in laboratory tests and earthquake investigation. However, the progressive collapse behavior of UPPC subjected to column removal scenario is still unclear. To fill this knowledge gap, two 1/2 scaled UPPC beam-column sub-assemblages were tested under a penultimate column removal scenario. The dynamic test results indicated that UPPC sub-assemblages have desirable load redistribution capacity to mitigate progressive collapse. The failure modes of the sub-assemblages observed in dynamic test were quite similar to that in static counterparts
A survey on cyber security for smart grid communications
A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE
r-Process Nucleosynthesis in Shocked Surface Layers of O-Ne-Mg Cores
We demonstrate that rapid expansion of the shocked surface layers of an
O-Ne-Mg core following its collapse can result in r-process nucleosynthesis. As
the supernova shock accelerates through these layers, it makes them expand so
rapidly that free nucleons remain in disequilibrium with alpha-particles
throughout most of the expansion. This allows heavy r-process isotopes
including the actinides to form in spite of the very low initial neutron excess
of the matter. We estimate that yields of heavy r-process nuclei from this site
may be sufficient to explain the Galactic inventory of these isotopes.Comment: 11 pages, 1 figure, to appear in the Astrophysical Journal Letter
- …
