1,618 research outputs found

    Finite Field Multiple Access

    Full text link
    In the past several decades, various multiple-access (MA) techniques have been developed and used. These MA techniques are carried out in complex-field domain to separate the outputs of the users. It becomes problematic to find new resources from the physical world. It is desirable to find new resources, physical or virtual, to confront the fast development of MA systems. In this paper, an algebraic virtual resource is proposed to support multiuser transmission. For binary transmission systems, the algebraic virtual resource is based on assigning each user an element pair (EP) from a finite field GF(pmp^m). The output bit from each user is mapped into an element in its assigned EP, called the output symbol. For a downlink MA system, the output symbols from the users are jointly multiplexed into a unique symbol in the same field GF(pmp^m) for further physical-layer transmission. The EPs assigned to the users are said to form a multiuser algebraic uniquely decodable (UD) code. Using EPs over a finite field, a network, a downlink, and an uplink orthogonal/non-orthogonal MA systems are proposed, which are called finite-field MA (FFMA) systems. Methods for constructing algebraic UD codes for FFMA systems are presented. An FFMA system can be designed in conjunction with the classical complex-field MA techniques to provide more flexibility and varieties.Comment: 32 pages, 10 figure

    Dense 3D Facial Reconstruction from a Single Depth Image in Unconstrained Environment

    Get PDF
    With the increasing demands of applications in virtual reality such as 3D films, virtual Human-Machine Interactions and virtual agents, the analysis of 3D human face analysis is considered to be more and more important as a fundamental step for those virtual reality tasks. Due to information provided by an additional dimension, 3D facial reconstruction enables aforementioned tasks to be achieved with higher accuracy than those based on 2D facial analysis. The denser the 3D facial model is, the more information it could provide. However, most existing dense 3D facial reconstruction methods require complicated processing and high system cost. To this end, this paper presents a novel method that simplifies the process of dense 3D facial reconstruction by employing only one frame of depth data obtained with an off-the-shelf RGB-D sensor. The experiments showed competitive results with real world data

    A giant hemolymphangioma of the pancreas in a 20-year-old girl: a report of one case and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemolymphangioma of the pancreas is a very rare benign tumor. There were only six reports of this disease until December 2008. Herein, we report a case of giant hemolymphangioma of the pancreas in a 20-year-old girl.</p> <p>Case presentation</p> <p>We describe a 20-year-old girl who presented with a mass in abdominal cavity and epigastric discomfort about a week. Physical examination showed a great abdominal mass. Abdominal computed tomography showed extrinsic duodenal compression due to a large retroperitoneal tumor possibly arising from pancreas. The tumor enucleation was performed and a diagnosis of hemolymphangioma of the pancreas was made. The patient had a complication of chylous leakage, which was successfully managed. The patient is alive and well, after 26 months of follow-up, with no complaints or recurrence.</p> <p>Conclusion</p> <p>From this case and literature, we can conclude that hemolymphangioma of the pancreas in adult is a rare benign tumor, and accurate diagnosis can not be preoperatively established. Tumor resection should be performed whenever possible. The risk of recurrence seems very low.</p

    The chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) controls cellular quiescence by hyperpolarizing the cell membrane during diapause in the crustacean Artemia

    Get PDF
    Cellular quiescence, a reversible state in which growth, proliferation, and other cellular activities are arrested, is important for self-renewal, differentiation, development, regeneration, and stress resistance. However, the physiological mechanisms underlying cellular quiescence remain largely unknown. In the present study, we used embryos of the crustacean Artemia in the diapause stage, in which these embryos remain quiescent for prolonged periods, as a model to explore the relationship between cell-membrane potential (V-mem) and quiescence. We found that V-mem is hyperpolarized and that the intracellular chloride concentration is high in diapause embryos, whereas V-mem is depolarized and intracellular chloride concentration is reduced in postdiapause embryos and during further embryonic development. We identified and characterized the chloride ion channel protein cystic fibrosis transmembrane conductance regulator (CFTR) of Artemia (Ar-CFTR) and found that its expression is silenced in quiescent cells of Artemia diapause embryos but remains constant in all other embryonic stages. Ar-CFTR knockdown and GlyH-101-mediated chemical inhibition of Ar-CFTR produced diapause embryos having a high V-mem and intracellular chloride concentration, whereas control Artemia embryos released free-swimming nauplius larvae. Transcriptome analysis of embryos at different developmental stages revealed that proliferation, differentiation, and metabolism are suppressed in diapause embryos and restored in postdiapause embryos. Combined with RNA sequencing (RNA-Seq) of GlyH-101-treated MCF-7 breast cancer cells, these analyses revealed that CFTR inhibition down-regulates the Wnt and Aurora Kinase A (AURKA) signaling pathways and up-regulates the p53 signaling pathway. Our findings provide insight into CFTR-mediated regulation of cellular quiescence and V-mem in the Artemia model

    Preparation and Characterization of Lecithin-Nano Ni/Fe for Effective Removal of PCB77

    Get PDF
    A kind of combined material (named lecithin-nano Ni/Fe) that is composed of lecithin and nanoscale Ni/Fe bimetal was synthesized via microemulsion method. The efficacy of such an original material was tested using 3,3′,4,4′-tetrachlorobiphenyl (PCB77) as target pollutant. A microemulsion system was optimized as template to prepare Ni/Fe nanoparticles, which was followed by an insite loading process with the deposition of lecithin carrier. It was proved by the characterization that subtle Ni/Fe nanoparticles can be uniformly dispersed and closely combined with lecithin carrier. Lecithin was an environmentally compatible biosurfactant that acted as both the component of the microemulsion and the functional material to accumulate organic contaminants. It was expected that the combined material can integrate the functions of lecithin and bimetal. The effectiveness was exhibited through the more rapid and sufficient removal of PCB77 by lecithin-nano Ni/Fe than that by blank carrier. Although requiring further improvement, the constitution of lecithin-nano Ni/Fe was a beneficial attempt to acquire the synergistic effect for intensified removal of environmental contaminants. It was promising that the original system and convenient method described in this work will facilitate the development of the organic-inorganic combined materials
    corecore