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Abstract—This paper presents a novel method to conduct camera pose estimation though combining Kinect and Perspective-n-
points algorithms. Most existing camera pose estimation methods suffer from the errors caused by inevitable outliers between 2D-3D 
correspondences. To this end, we propose to use a random down sampling process to deal with outliers in this paper. The proposed 
method is divided into two main steps, which are 2D-3D correspondences generation and pose estimation. The method has been tested 
in a real project, and the experiment has shown encouraging results compared to the ground truth.   
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I.  INTRODUCTION 
Camera pose estimation is a widely used technique for multi-camera related applications. The main objective of the estimation 

is to recover the Rotation and Translation of one camera in a certain coordinate system from its image. There are three kinds of 
implementation for this estimation process, which are the ones based on direct linear transformation (DLT), perspective-n-points 
(PnP), and a priori information estimator. Due to its higher robustness, PnP has wider users than others. However, to achieve 
accurate estimation results, PnP requires a set of high accurate 2D-3D correspondences between 2D points in camera image and 3D 
points in the space, which would be obtained with inevitable outliers that could leads to potential errors.  

In this paper, a robust method for camera pose estimation is presented for dealing with outliers. The proposed method consists 
of a robust 2D-3D correspondence generator, iterated camera pose estimator. We employ Kinect into implementation for 3D points 
sensing, and perspective-n-points as the core of the estimator. Through experiments, the proposed method is tested to be robust for 
different situations.  

II. BACKGROUND 

A. Kinect 
In recent years, 3D depth camera draws more and more attentions to researchers due to its versatile applications in computer 

vision, such as stereo cameras and Time of Flight (TOF) cameras [1]. One of the best in these 3D depth sensors is Microsoft’s 
Kinect [2]. Kinect was designed for human machine interaction in a game environment in the first place. However, the 
characteristics of the data captured by Kinect, especially 3D depth information acquired, have also attracted the researchers in 
computer vision community. Kinect is actually an RGB-D sensor which provides synchronized RGB color and depth images. The 
RGB color image is captured by a normal camera built in to the Kinect, while the ability of depth sensing is achieved by an infrared 
laser projector and an infrared video camera mounted within the Kinect, as shown in Fig. 1. The system uses the infrared camera to 
detect a speckle pattern projected onto objects in the Kinect’s field of view (FOV). By measuring deformations in the reference 
speckle pattern, Kinect can recover the 3D depth information of objects [3]. The experimental results have shown that Kinect is 
more accurate than the TOF depth sensor, and close to a medium-resolution stereo camera [4]. 

Though the RGB image and Depth image are captured simultaneously, there is a spatial shift between two captured images by 
the normal camera and the infrared camera due to their location difference [3]. And moreover the raw depth data is noisy, and 
usually contains zero depth (holes). Therefore, many Kinect based systems begin with a preprocessing that conducts RGB and 
depth spatial alignment, or depth data filtering.  



 
Fig. 1. The sensor of Kinect 360. 

B. Perspective-N-Points 
The main objective of camera pose estimation based on perspective-n-points, referring to as PnP problem, is to recover the 

relative position between camera and the origin of a certain coordinate system from n known correspondences of 3D points in space 
and 2D points in image. There is a number of implementation for the PnP estimation problem. A distance based definition was first 
proposed by Fisher in 1981 [5], and Horaud, Conio, and Leboulleux in 1989 [6] presented the transformation based definition of 
PnP problem. The later PnP problem solutions are mostly based on these two kinds of definitions. The minimal corresponding 
points’ number is 3, which make the minimal PnP problem to be P3P problem. Gao [7] and Kneip [8] discussed the P3P solutions 
in their literatures respectively. In practical, P3P often suffers from the instability due to the outliers. As a common solution, most 
of existing researches of PnP using redundancy of the 2D-3D correspondence to improve the accuracy.  

Among the whole range of PnP implementations, a solution called Efficient Perspective-n-Points (EPnP) was presented by 
Lepetit, Moreno-Noguer and Fua [9] in 2009. They speeded up the estimation process with a computational complexity of O (n) for 
n (n≥4) points of 2D-3D correspondences. The efficiency of the implementation is achieved by representing the 3D points in space 
as a weighted sum of m (m≤4) actual 3D points in the space, and process all following calculation only on these sum weighted 3D 
points. By solve the parameterized quadratic equations to obtain the estimated solution within a linear time consumption over a 
number of 2D-3D corresponding point pairs. This linear algebra techniques based estimation method has made a trade-off between 
speed and accuracy.  

III. PROPOSED METHOD 
In this paper, a camera pose estimation method is proposed by combining the Kinect and EPnP algorithm. We choose Kinect 

because it could provide us with 3D point cloud of the scene, which will be useful for the calculation of the Perspective-n-Points 
algorithm. Our method is tested in the real project which tracks human’s face orientation across different cameras. The experiments 
with encouraging results is showed in the section V. 
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Fig. 2. The illustration of work flow of the proposed method. 

A. Preparation of the Corresponding 3D Coordinates 
The first step for camera pose estimation is to find the 2D-3D correspondence between the 2D points in the camera image and 

the 3D points in the space. Because Kinect can generate both RGB image and depth image, the 2D-3D correspondence can be done 
through an intermediate step of 2D-2D correspondence between camera RGB image and Kinect RGB image. And then the 



relationship between points in Kinect RGB image and Kinect Depth image will provide the 2D-3D correspondence mentioned 
above.  

In general, 2D-2D correspondence can be achieved by feature matching. In this paper, the feature matching algorithm by Orb 
[10] is employed as both feature detector and descriptor due to its fast calculation speed. And brute force matching is used for 
feature matching with distance determined by Hamming distance, which is chosen also because of its computational timesaving. 
However, there would be uncertainties of mismatched features in the matching results, which present errors to the following-up 
process. Therefore, we introduce Fundamental Matrix into our method to do the filtering work for outliers of the matching.  

Fundamental Matrix is a 3 by 3 matrix that refers to the projection relationship between two images that captured by two 
cameras with different poses. Every pair of 2D points in two images respectively that projected from same one 3D point in the 
space should be matched as a corresponding pair. And Fundamental Matrix implies the fact that this pair of 2D points should lie in 
a same plane, which is called epipolar plane. The intersections of this plane and two image planes are called epipolar lines, which 
are represented by the Fundamental Matrix. Therefore, the estimation of the Fundamental Matrix will guide the feature matching 
with a better accuracy. However, this guidance cannot exactly provide the rule of truly matching due to that the Fundamental 
Matrix is also estimated based on the pre-matched points. Therefore, we applied a randomly down sampling of the matched point-
pairs filtered by estimated Fundamental Matrix. And another Fundamental Matrix estimated based on the previous filtered point-
pairs is used to perform further filtering.  

As a result, the whole 2D-2D feature matching process is divided into three steps: (a) feature extraction using ORB as both 
detector and descriptor, and matching using Hamming distance; (b) filtering the matching results by the fundamental matrix 
calculated using the results obtained in step (a); (c) Randomly down sampling the matched feature pairs from the results in step (b) 
to a predefined number of feature pairs count, and filtering them again with fundamental matrix calculated by the random samples. 
After the step (c), a feature matching results with much better accuracy can be achieved, as shown in Fig. 3. 

(a) 

(b) 

(c) 

Fig. 3. The illustration of the feature matching filtering process. (a) The results of using ORB feature matching alone; (b) The results that filtered by Fundamental 
Matrix for the first time from the results in (a). They are more accurate than the results in (a); (c) The results that filtered by Fundamental Matrix for the second 
time from the random samples of the results in (b). They have the best accuracy in all steps. 

In the meanwhile, the process of alignment between the RGB image and the depth image both generated from Kinect is carried 
out. As we mentioned in section II, the shift of the location of the different sensors causes a shift between RGB image and Depth 
Image. This presents an obstacle for searching from 3D points in space to 2D points in the camera image, which has 2D-2D 
correspondence to Kinect RGB image. This could be solved by taking into account of the constant distance between the RGB 
sensor and the Infrared sensor in the Kinect device. With the knowledge of field of view (FOV) of the Kinect, we can modify every 



pixel in the depth image accordingly to make them aligned with the pixel in RGB image. After alignment, for every coordinate of 
2D point in RGB image, we can retrieve the corresponding 2D coordinate in Depth image.  Then coordinate of 3D point in the 
space can be obtained with the (1).  
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Where u0, v0 being the depth image center of the Kinect, f being the focal length of the infrared camera. Then xp, yp, zp will be 
the 3D coordinate of a point in the space corresponding to the 2D point of (u, v) in the depth image. The alignment  

 
Fig. 4. The illustration of the point cloud obtain with Kinect after RGB image and Depth image aligned. The Kinect is in front of the chair. 

result of RGB image and Depth image is illustrated in the Fig. 4. 

B. Camera Pose Estimation 
When 2D-3D correspondence is found, the next process is the estimation of the camera pose. In our method, this process is 

mainly based on an iterative process. In every loop of iterations, a Perspective-n-Points (PnP) algorithm is applied along with the 
2D-3D correspondence calculated by the previous process. There a range of PnP algorithm implementations in the community. We 
choose Efficient Perspective-n-Points (EPnP) according to its high efficiency in calculation. EPnP algorithm is an O (n) non-
iterative process in the first place. We put it into a sequence of loops because that the main process of the PnP algorithm is about 
parameterization and quadratic equations solving, which will also bring in errors when outliers are inputted. To minimize this, in 
each loop of the iteration, we firstly apply the EPnP algorithm with the 2D-3D correspondences. And then a projection process 
from every 3D point in space to 2D points is conducted with the estimated camera rotation and translation in current loop. By 
comparing the projected 2D points and the true 2D points in the camera image, the outliers of the 2D-3D pairs can be counted. If 
the number of outliers is above a threshold as a predefined value, such as the 40% of the total number of the point-pairs in our 
experiment, then randomly down sample the 2D-3D point pairs to a predefined number of count, such as the 60% of the total 
number of the point-pairs in our experiment. After randomly down sampling, begin the next loop. If the outliers is below the 
threshold, or the total count of the loop is above a predefined number, the iteration should end, and the final results of the camera 
pose can be outputted. 

IV. EXPERIMENTS 
The proposed method is tested in a real application project which consists of multiple cameras and Kinect. The origin of the 

global coordinate is located in the principle point of the Kinect. It’s a right hand coordinate system while the z axis comes out from 
Kinect face. The project requires the knowledge of every camera’s pose in the global coordinate. However, every time the devices 
are assembled together, the related pose of every camera varies. In order to obtain every pose of the camera after assembling, 
method proposed in this paper is applied.  

In practical, our method has successful calculated the cameras’ poses in different situations. As shown in Fig. 5, different 
camera has different relative pose to the Kinect. The left camera is located in the left bottom of the Kinect. The right camera is 
mounted in the right bottom of the Kinect. And the middle camera is seated in the near bottom of the Kinect. The estimations show 
encouraging results compared to the ground truth. 

 



TABLE I.  THE RESULTS OF PROPOSED METHOD 

 Rotation Matrix Translation Matrix 
Proposed Method   

Right Camera 
0.7708 0.2553 0.5837
0.1778 0.7936 0.5819
0.6118 0.5522 0.5663

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣

−

−

− ⎦

− −

−

 538.5903
608.0502
525.1226

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Middle Camera 
0.9997 0.0191 0.0172
0.0210 0.9927 0.1188
0.0148 0.1192 0.9928

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢

−

⎣

−

− ⎦

− −

⎥

 13.1757
124.8214
145.3288

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Left Camera 
0.7742 0.3490 0.5279
0.2347 0.6163 0.7517
0.5877 0.7059 0.3953

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−

−

 386.8028
632.9952
725.2192

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Ground Truth a   

Right Camera 
0.7823 0.2098 0.5865
0.2038 0.8036 0.5592
0.5887 0.5570 0.5859

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣

−

−

− ⎦

− −

−

 542.5367
612.5463
520.4527

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Middle Camera 
0.9911 0.1318 0.0192
0.1331 0.9845 0.1144
0.0038 0.1159 0.9932

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢

−

⎣

−

− ⎦

− −

⎥

 11.4364
120.6453
139.8563

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Left Camera 
0.7663 0.3017 0.5672
0.3048 0.6064 0.7344
0.5655 0.7357 0.3727

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−

−

 391.5437
629.2484
728.2386

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

a. The ground truth is calculated by handy measurements of the devices along three axes, and Rotation matrix is obtained with Rodrigues transformation of the measurements afterwards. 
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Fig. 5. The experiments results with proposed method, where (b) and (c) is for Right Camera in (a); (d) and (e) is for Middle Camera in (a); (f) and (g) is for Left 
Camera in (a).  



According to Table 1, three cameras’ rotations and translations calculated by proposed method are very close to the ground 
truth, which is obtained by manually measuring the positions and orientations for three cameras in the global coordinate system 
respectively.  As shown in Fig. 5, recovered relationships between three cameras and Kinect could be a good representation of the 
true situation from the reality.  

Since the estimation process is achieved by optimization, it only results in local minima. The errors in Table 1 are mainly 
caused by the input of the optimization, which is the 2D-3D correspondence in our method. The better the input provides to the 
optimization process, the closer the initial position is to the global minima in the optimization process, which will transfer the local 
minima to the global minima to achieve a higher accuracy. Therefore, high accurate 2D-3D correspondence is crucial to the 
estimation process. The iterations with Randomly Down Sampling process discussed in this paper are aimed at removing outliers in 
2D-3D correspondence as many as possible to provide better input to the optimization process. It thusleads to lower errors in the 
outputs of the camera pose estimation.  

V. CONCLUSION 
In this paper, we have presented a novel method for camera pose estimation including multi-steps feature matching for 2D-3D 

correspondence, and an iterated estimation process with randomly down sampling. In order to minimize the number of outliers in 
the 2D-3D correspondences, a multi-step with randomly down sampling and fundamental matrix guided filtering is applied to the 
2D-2D matching process. With the alignment of the RGB image and Depth image of the Kinect, 2D-3D correspondence can be 
obtained with as less outliers as possible. The iterated process is invited with PnP estimation and re-projection check combined to 
minimize the error brought in by outliers. The experiment results show encouraging outputs for very different poses of cameras 
comparing to ground truth.  
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