2,858 research outputs found

    Diverse biological effects of glycosyltransferase genes from Tartary buckwheat

    Get PDF
    Background: Tartary buckwheat (Fagopyrum tataricum) is an edible cereal crop whose sprouts have been marketed and commercialized for their higher levels of anti-oxidants, including rutin and anthocyanin. UDP-glucose flavonoid glycosyltransferases (UFGTs) play an important role in the biosynthesis of flavonoids in plants. So far, few studies are available on UFGT genes that may play a role in tartary buckwheat flavonoids biosynthesis. Here, we report on the identification and functional characterization of seven UFGTs from tartary buckwheat that are potentially involved in flavonoid biosynthesis (and have varying effects on plant growth and development when overexpressed in Arabidopsis thaliana.) Results: Phylogenetic analysis indicated that the potential function of the seven FtUFGT proteins, FtUFGT6, FtUFGT7, FtUFGT8, FtUFGT9, FtUFGT15, FtUFGT40, and FtUFGT41, could be divided into three Arabidopsis thaliana functional subgroups that are involved in flavonoid biosynthesis of and anthocyanin accumulation. A significant positive correlation between FtUFGT8 and FtUFGT15 expression and anthocyanin accumulation capacity was observed in the tartary buckwheat seedlings after cold stress. Overexpression in Arabidopsis thaliana showed that FtUFGT8, FtUFGT15, and FtUFGT41 significantly increased the anthocyanin content in transgenic plants. Unexpectedly, overexpression of FtUFGT6, while not leading to enhanced anthocyanin accumulation, significantly enhanced the growth yield of transgenic plants. When wild-type plants have only cotyledons, most of the transgenic plants of FtUFGT6 had grown true leaves. Moreover, the growth speed of the oxFtUFGT6 transgenic plant root was also significantly faster than that of the wild type. At later growth, FtUFGT6 transgenic plants showed larger leaves, earlier twitching times and more tillers than wild type, whereas FtUFGT15 showed opposite results. Conclusions: Seven FtUFGTs were isolated from tartary buckwheat. FtUFGT8, FtUFGT15, and FtUFGT41 can significantly increase the accumulation of total anthocyanins in transgenic plants. Furthermore, overexpression of FtUFGT6 increased the overall yield of Arabidopsis transgenic plants at all growth stages. However, FtUFGT15 shows the opposite trend at later growth stage and delays the growth speed of plants. These results suggested that the biological function of FtUFGT genes in tartary buckwheat is diverse

    PPARĪ²/Ī“ selectively regulates phenotypic features of age-related macular degeneration.

    Get PDF
    Peroxisome proliferator-activated receptor-Ī²/Ī“ (PPARĪ²/Ī“) is a nuclear receptor that regulates differentiation, inflammation, lipid metabolism, extracellular matrix remodeling, and angiogenesis in multiple tissues. These pathways are also central to the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss globally. With the goal of identifying signaling pathways that may be important in the development of AMD, we investigated the impact of PPARĪ²/Ī“ activation on ocular tissues affected in the disease. PPARĪ²/Ī“ is expressed and can be activated in AMD vulnerable cells, including retinal pigment epithelial (RPE) and choroidal endothelial cells. Further, PPARĪ²/Ī“ knockdown modulates AMD-related pathways selectively. Specifically, genetic ablation of PparĪ²/Ī“ in aged mice resulted in exacerbation of several phenotypic features of early dry AMD, but attenuation of experimentally induced choroidal neovascular (CNV) lesions. Antagonizing PPARĪ²/Ī“ in both in vitro angiogenesis assays and in the in vivo experimentally induced CNV model, inhibited angiogenesis and angiogenic pathways, while ligand activation of PPARĪ²/Ī“, in vitro, decreased RPE lipid accumulation, characteristic of dry AMD. This study demonstrates for the first time, selective regulation of a nuclear receptor in the eye and establishes that selective targeting of PPARĪ²/Ī“ may be a suitable strategy for treatment of different clinical sub-types of AMD

    Treatment with gelsolin reduces brain inflammation and apoptotic signaling in mice following thermal injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Burn survivors develop long-term cognitive impairment with increased inflammation and apoptosis in the brain. Gelsolin, an actin-binding protein with capping and severing activities, plays a crucial role in the septic response. We investigated if gelsolin infusion could attenuate neural damage in burned mice.</p> <p>Methods</p> <p>Mice with 15% total body surface area burns were injected intravenously with bovine serum albumin as placebo (2 mg/kg), or with low (2 mg/kg) or high doses (20 mg/kg) of gelsolin. Samples were harvested at 8, 24, 48 and 72 hours postburn. The immune function of splenic T cells was analyzed. Cerebral pathology was examined by hematoxylin/eosin staining, while activated glial cells and infiltrating leukocytes were detected by immunohistochemistry. Cerebral cytokine mRNAs were further assessed by quantitative real-time PCR, while apoptosis was evaluated by caspase-3. Neural damage was determined using enzyme-linked immunosorbent assay of neuron-specific enolase (NSE) and soluble protein-100 (S-100). Finally, cerebral phospho-ERK expression was measured by western blot.</p> <p>Results</p> <p>Gelsolin significantly improved the outcomes of mice following major burns in a dose-dependent manner. The survival rate was improved by high dose gelsolin treatment compared with the placebo group (56.67% vs. 30%). Although there was no significant improvement in outcome in mice receiving low dose gelsolin (30%), survival time was prolonged against the placebo control (43.1 Ā± 4.5 h vs. 35.5 Ā± 5.0 h; P < 0.05). Burn-induced T cell suppression was greatly alleviated by high dose gelsolin treatment. Concurrently, cerebral abnormalities were greatly ameliorated as shown by reduced NSE and S-100 content of brain, decreased cytokine mRNA expressions, suppressed microglial activation, and enhanced infiltration of CD11b+ and CD45+ cells into the brain. Furthermore, the elevated caspase-3 activity seen following burn injury was remarkably reduced by high dose gelsolin treatment along with down-regulation of phospho-ERK expression.</p> <p>Conclusion</p> <p>Exogenous gelsolin infusion improves survival of mice following major burn injury by partially attenuating inflammation and apoptosis in brain, and by enhancing peripheral T lymphocyte function as well. These data suggest a novel and effective strategy to combat excessive neuroinflammation and to preserve cognition in the setting of major burns.</p

    Soft-sediment deformation structures related to volcanic earthquakes of the Lower Cretaceous Qingshan Group in Lingshan Island, Shandong Province, East China

    Get PDF
    Abstract The study on soft-sediment deformation structures (SSDS) of Lingshan Island has been one of the hot topics of sedimentology researches in China in recent years, and SSDS developed in turbidite system in the Laiyang Group are widely known by domestic researchers. However, few studies were conducted on the SSDS in fan delta system in the Qingshan Group, Lingshan Island. This study analyzes the classification and characteristics of SSDS especially their lithofacies association and lithologic characteristics through field outcrops investigation and thin section analysis as well. A conclusion was acquired that the paleoenvironment was a fan delta system with occurrence of several volcanic eruptions, where the water became gradually shallower. The SSDS types in the Qingshan Group includes load and flame structure, ball and pillow structure, water-escape structure, hydroplastic deformation structure, plastic sandstone breccia structure, volcanic drop stone and V-shaped ground fissure mainly caused by volcanic earthquakes of three types: (1) seismic waves, (2) gravity and inertia effect of pyroclastic flows, (3) instant differential air pressure; which is different from slumping and tectonic earthquakes occurred in the Laiyang Group. In addition, with the lithofacies association analysis between pyroclastic flow and SSDS beds, a distribution model of SSDS related to volcanic earthquakes can be established: SSDS types changed gradually with their distance further away from the volcanic activity core. Brittle deformation which was common in the proximal zone disappeared gradually; liquefied and plastic SSDS continued to dominate in the medial zone; and slightly liquefied SSDS were developed in the distal zone. Meanwhile, the scale and size of SSDS is negatively correlated with the distance of SSDS depositional locations from the volcanic vent
    • ā€¦
    corecore