3,407 research outputs found

    Knowledge Infused Policy Gradients with Upper Confidence Bound for Relational Bandits

    Get PDF
    Contextual Bandits find important use cases in various real-life scenarios such as online advertising, recommendation systems, healthcare, etc. However, most of the algorithms use flat feature vectors to represent context whereas, in the real world, there is a varying number of objects and relations among them to model in the context. For example, in a music recommendation system, the user context contains what music they listen to, which artists create this music, the artist albums, etc. Adding richer relational context representations also introduces a much larger context space making exploration-exploitation harder. To improve the efficiency of exploration-exploitation knowledge about the context can be infused to guide the exploration-exploitation strategy. Relational context representations allow a natural way for humans to specify knowledge owing to their descriptive nature. We propose an adaptation of Knowledge Infused Policy Gradients to the Contextual Bandit setting and a novel Knowledge Infused Policy Gradients Upper Confidence Bound algorithm and perform an experimental analysis of a simulated music recommendation dataset and various real-life datasets where expert knowledge can drastically reduce the total regret and where it cannot.Comment: Accepted for publication in the research track at ECML-PKDD 202

    Knowledge-infused Reinforcement Learning

    Get PDF
    Virtual health agents (VHAs) have received considerable attention, but the early focus has been on collecting data, helping patients follow generic health guidelines, and providing reminders for clinical appointments. While presenting the collected data and frequency of visits to the clinician is useful, further context and personalization are needed for a VHA to interpret and understand what the data means in clinical terms. This has made their use in managing health limited. Such understanding enables patient empowerment and self-appraisal – i.e., aiding the patient in interpreting the data to understand the changes in the patient’s health conditions, and self-management – i.e., to help a patient better manage their health through better adherence to the clinician guidelines and clinician recommended care plan. Crisis conditions such as the current pandemic have further stressed our healthcare system and have made the need for such advanced support more attractive and in demand. Consider the rapid growth in mental health because the patients who already had mental health conditions worsen, and many develop such conditions due to the challenges arising from lockdown, isolation, and economic hardships. The severe lack of timely availability of clinical expertise to meet the rapidly growing demand provides the motivation for advancing this research in developing more advanced VHAs and evaluating it in the context of mental health management

    Process Knowledge-infused Learning for Suicidality Assessment on Social Media

    Get PDF
    Improving the performance and natural language explanations of deep learning algorithms is a priority for adoption by humans in the real world. In several domains, such as healthcare, such technology has significant potential to reduce the burden on humans by providing quality assistance at scale. However, current methods rely on the traditional pipeline of predicting labels from data, thus completely ignoring the process and guidelines used to obtain the labels. Furthermore, post hoc explanations on the data to label prediction using explainable AI (XAI) models, while satisfactory to computer scientists, leave much to be desired to the end users due to lacking explanations of the process in terms of human-understandable concepts. We introduce, formalize, and develop a novel Artificial Intelligence (A) paradigm - Process Knowledge infused Learning (PK-iL). PK-iL utilizes a structured process knowledge that explicitly explains the underlying prediction process that makes sense to end-users. The qualitative human evaluation confirms through a annotator agreement of 0.72, that humans are understand explanations for the predictions. PK-iL also performs competitively with the state-of-the-art (SOTA) baselines

    Topological Insulators and Superconductors from D-branes

    Get PDF
    Realization of topological insulators (TIs) and superconductors (TSCs), such as the quantum spin Hall effect and the Z_2 topological insulator, in terms of D-branes in string theory is proposed. We establish a one-to-one correspondence between the K-theory classification of TIs/TSCs and D-brane charges. The string theory realization of TIs and TSCs comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature. This sheds light on TIs and TSCs beyond non-interacting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions.Comment: 5 pages, 1 figur

    Knowledge Infused Policy Gradients for Adaptive Pandemic Control

    Get PDF
    COVID-19 has impacted nations differently based on their policy implementations. The effective policy requires taking into account public information and adaptability to new knowledge. Epidemiological models built to understand COVID-19 seldom provide the policymaker with the capability for adaptive pandemic control (APC). Among the core challenges to be overcome include (a) inability to handle a high degree of non-homogeneity in different contributing features across the pandemic timeline, (b) lack of an approach that enables adaptive incorporation of public health expert knowledge, and (c) transparent models that enable understanding of the decision-making process in suggesting policy. In this work, we take the early steps to address these challenges using Knowledge Infused Policy Gradient (KIPG) methods. Prior work on knowledge infusion does not handle soft and hard imposition of varying forms of knowledge in disease information and guidelines to necessarily comply with. Furthermore, the models do not attend to non-homogeneity in feature counts, manifesting as partial observability in informing the policy. Additionally, interpretable structures are extracted post-learning instead of learning an interpretable model required for APC. To this end, we introduce a mathematical framework for KIPG methods that can (a) induce relevant feature counts over multi-relational features of the world, (b) handle latent non-homogeneous counts as hidden variables that are linear combinations of kernelized aggregates over the features, and (b) infuse knowledge as functional constraints in a principled manner. The study establishes a theory for imposing hard and soft constraints and simulates it through experiments. In comparison with knowledge-intensive baselines, we show quick sample efficient adaptation to new knowledge and interpretability in the learned policy, especially in a pandemic context

    Collaborative Multi-Agent Video Fast-Forwarding

    Full text link
    Multi-agent applications have recently gained significant popularity. In many computer vision tasks, a network of agents, such as a team of robots with cameras, could work collaboratively to perceive the environment for efficient and accurate situation awareness. However, these agents often have limited computation, communication, and storage resources. Thus, reducing resource consumption while still providing an accurate perception of the environment becomes an important goal when deploying multi-agent systems. To achieve this goal, we identify and leverage the overlap among different camera views in multi-agent systems for reducing the processing, transmission and storage of redundant/unimportant video frames. Specifically, we have developed two collaborative multi-agent video fast-forwarding frameworks in distributed and centralized settings, respectively. In these frameworks, each individual agent can selectively process or skip video frames at adjustable paces based on multiple strategies via reinforcement learning. Multiple agents then collaboratively sense the environment via either 1) a consensus-based distributed framework called DMVF that periodically updates the fast-forwarding strategies of agents by establishing communication and consensus among connected neighbors, or 2) a centralized framework called MFFNet that utilizes a central controller to decide the fast-forwarding strategies for agents based on collected data. We demonstrate the efficacy and efficiency of our proposed frameworks on a real-world surveillance video dataset VideoWeb and a new simulated driving dataset CarlaSim, through extensive simulations and deployment on an embedded platform with TCP communication. We show that compared with other approaches in the literature, our frameworks achieve better coverage of important frames, while significantly reducing the number of frames processed at each agent.Comment: IEEE Transactions on Multimedia, 2023. arXiv admin note: text overlap with arXiv:2008.0443
    • …
    corecore