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Realization of topological insulators (TIs) and superconductors (TSCs), such as the quantum spin Hall
effect and the Z2 topological insulator, in terms of D-branes in string theory is proposed. We establish
a one-to-one correspondence between the K-theory classification of TIs/TSCs and D-brane charges. The
string theory realization of TIs and TSCs comes naturally with gauge interactions, and the Wess–Zumino
term of the D-branes gives rise to a gauge field theory of topological nature. This sheds light on TIs and
TSCs beyond non-interacting systems, and the underlying topological field theory description thereof.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

A gapped state of quantum condensed matter is called topologi-
cal phase when it supports stable gapless boundary modes, such as
an edge or a surface state. The integer quantum Hall effect (QHE),
which exists in d = 2 spatial dimensions and under a strong mag-
netic field, is the best known example of such a phase. The recent
discovery of the quantum spin Hall effect (QSHE) in d = 2 and the
Z2 topological insulator in d = 3 [1–8] shows topological phases
can exist even in d > 2 spatial dimensions, and can be protected
by some discrete symmetries such as time-reversal symmetry (TRS,
T), particle–hole symmetry (PHS, C), and chiral (or sublattice) sym-
metry (SLS, S).

For non-interacting fermions, an exhaustive classification of
topological insulators (TIs) and superconductors (TSCs) is proposed
in Refs. [9,10]: TIs/TSCs are classified in terms of spatial dimen-
sions d and the 10 = 2 + 8 symmetry classes (two “complex” and
eight “real” classes) (Table 1). The ten symmetry classes are in
one-to-one correspondence to the Riemannian symmetric spaces
(without exceptional series) and, as pointed out in [10], they are
equivalent to K-theory classifying spaces [11]. For example, the
IQHE, QSHE, and Z2 TI are a topologically non-trivial state belong-
ing to class A (d = 2), AII (d = 2), and AII (d = 3), respectively.

The complete classification of non-interacting TIs and TSCs
opens up a number of further questions, most interesting among
which are interaction effects: Do non-interacting topological phases
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Table 1
Classification of topological insulators and superconductors [9,10]; d is the space di-
mension; the left-most column (A, AIII, . . . , CI) denotes the ten symmetry classes of
fermionic Hamiltonians, which are characterized by the presence/absence of time-
reversal (T), particle–hole (C), and chiral (or sublattice) (S) symmetries of different
types denoted by ±1 in the right most three columns. The entries “Z”, “Z2”, “2Z”,
and “0” represent the presence/absence of topological insulators and superconduc-
tors, and when they exist, types of these states (see Ref. [9] for detailed descrip-
tions).

class\d 0 1 2 3 4 5 6 7 T C S

A Z 0 Z 0 Z 0 Z 0 0 0 0
AIII 0 Z 0 Z 0 Z 0 Z 0 0 1

AI Z 0 0 0 2Z 0 Z2 Z2 + 0 0
BDI Z2 Z 0 0 0 2Z 0 Z2 + + 1
D Z2 Z2 Z 0 0 0 2Z 0 0 + 0
DIII 0 Z2 Z2 Z 0 0 0 2Z − + 1
AII 2Z 0 Z2 Z2 Z 0 0 0 − 0 0
CII 0 2Z 0 Z2 Z2 Z 0 0 − − 1
C 0 0 2Z 0 Z2 Z2 Z 0 0 − 0
CI 0 0 0 2Z 0 Z2 Z2 Z + − 1

continue to exist in the presence of interactions? Can interactions
give rise to novel topological phases other than non-interacting
TIs/TSCs? What is a topological field theory underlying TIs/TSCs,
which can potentially describe TIs/TSCs beyond non-interacting ex-
amples, etc.

On the other hand, the ten-fold classification of TIs/TSCs re-
minds us of D-branes, which are fundamental objects in string
theory, and are also classified by K-theory [12] (Table 2) via the
open string tachyon condensation [13]. It is then natural to specu-
late a possible connection between TIs/TSCs and of D-branes. In
this Letter, we propose a systematic construction of TIs/TSCs in
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Table 2
Dp-brane charges from K-theory, classified by K(S9−p), KO(S9−p) and KSp(S9−p) [12]. A Z2 charged Dp-brane with p even or p odd represents a non-BPS Dp-brane or a
bound state of a Dp and an anti-Dp brane, respectively [13].

D(−1) D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

type IIB Z 0 Z 0 Z 0 Z 0 Z 0 Z

O9− (type I) Z2 Z2 Z 0 0 0 Z 0 Z2 Z2 Z

O9+ 0 0 Z 0 Z2 Z2 Z 0 0 0 Z
Table 3
External G (left-most column) and internal G̃ gauge groups for each spatial dimen-
sion d and symmetry class; U, O, Sp, represents U(1), O(1) = Z2, and Sp(1) = SU(2),
respectively.

G class\d 0 1 2 3 4 5 6 7

U A U – U – U – U –
U AIII – U – U – U – U

O AI O – – – Sp – U O
O BDI O O – – – Sp – U
O D U O O – – – Sp –
O DIII – U O O – – – Sp
Sp AII Sp – U O O – – –
Sp CII – Sp – U O O – –
Sp C – – Sp – U O O –
Sp CI – – – Sp – U O O

terms of two D-branes (Dp- and Dq-branes), possibly with an ori-
entifold plane (O-plane). Besides the appealing mathematical sim-
ilarity between TIs/TSCs and D-branes, realizing TIs/TSCs in string
theory has a number of merits, since string theory and D-branes
are believed to be rich enough to reproduce many types of field
theories and interactions in a fully consistent and UV complete
way. Indeed, our string theory realizations of TIs/TSCs give rise
to massive fermion spectra, which are in one-to-one correspon-
dence with the ten-fold classification of TIs/TSCs, and come quite
naturally with gauge interactions. These systems, while interact-
ing, are all topologically stable, as protected by the K-theory charge
of D-branes. We thus make a first step toward understanding in-
teracting TIs/TSCs [14]. We are also separately preparing a regular
paper with more details and expanded results in [15].

In Dp–Dq systems, massive fermions arise as an open string
excitation between the two D-branes. The distance between the
branes corresponds to the mass of fermions. Open strings ending
on the same D-branes give rise to a gauge field, which we call
Aμ (Dp) and Ãμ (Dq) with gauge group G and G̃ , respectively,
and couple to the fermions. These two gauge fields play different
roles in our construction: The gauge field Aμ “measures” K-theory
charge of the Dq-brane, and in that sense it can be interpreted
as an “external” gauge field. In this picture, the Dq-brane charge
is identified with the topological (K-theory) charge of TIs/TSCs.
On the other hand, Ãμ is an internal degree of freedom on the
Dq-brane. For example, in the integer/fractional QHE, the external
gauge field is the electromagnetic U(1) gauge field, which measures
the Hall conductivity, while the internal gauge field is the Chern–
Simons (CS) gauge field describing the dynamics of the droplet
itself.

The massive fermions can be integrated out, yielding the de-
scription of the topological phase in terms of the gauge fields. The
resulting effective field theory comes with terms of topological na-
ture, such as the CS or the θ -terms. In our string theory setup,
they can be read off from the Wess–Zumino (WZ) action of the
D-branes, by taking one of the D-branes as a background for the
other. One can view these gauge-interacting TIs/TSCs from Dp–Dq
systems as an analogue of the projective (parton) construction of
the (fractional) QHE [16]. Our string theory realization of TIs/TSCs
sheds light on extending the projective construction of the QHE to
more generic TIs/TSCs; it tells us what type of gauge field is “natu-
Table 4
Dp–Dq systems for class A and AIII where p = 5 and q = 3,5,7 for A, and p = 4
and q = 4,6 for AIII. The D-branes extend in the μ-th direction denoted by “×”
in the ten-dimensional space-time (μ = 0, . . . ,9); d + 1 is the number of common
directions of Dp- and Dq-branes; The last column shows the Dq-brane charge, to-
gether with fermion spectra per Dq-brane, where “N f Mj” or “N f Di” represents
N f flavor of Majorana and Dirac spinor, respectively.

0 1 2 3 4 5 6 7 8 9 d A

D5 × × × × × ×
D3 × × × × 0 Z (2 Mj)
D5 × × × × × × 2 Z (2 Mj)
D7 × × × × × × × × 4 Z (1 Di)

0 1 2 3 4 5 6 7 8 9 d AIII

D4 × × × × ×
D4 × × × × × 1 Z (2 Mj)
D6 × × × × × × × 3 Z (2 Mj)

ral” to couple with fermions in topological phases, and guarantees
the topological stability of the system.

2. Complex case

Let us start with the most familiar example of the QHE (class A
in d = 2). We fix the value of p to be p = 5 by T-duality, and con-
sider a D5-brane in type IIB string theory which extends in the
x0,1,2,3,4,5 directions in ten-dimensional space–time. We take the
Dq-brane with q = 5 in the x0,1,2,6,7,8 directions (Table 4). By T-
duality, this setup is equivalent to the D3–D7 system studied in
[19–21]. Since the number of Neumann–Dirichlet (ND) directions
is six, open string excitations between the D5-branes give rise to
two Majorana fermions (Mj) [= one two-component Dirac fermion
(Di), ψ ] and no bosons. The distance between the D-branes in x9

direction (�x9) is proportional to the mass m of the fermions. The
low-energy effective theory is schematically summarized by the ef-
fective Lagrangian in the (2 + 1)-dimensional common direction of
the two D5-branes,

L = ψ̄
[
γ μ(i∂μ − Aμ − Ãμ) − m

]
ψ + · · · . (1)

Integrating the massive fermions yields the CS terms k
4π

∫
A ∧ dA

and k
4π

∫
Ã ∧ dÃ with k = ±1/2 (parity anomaly). The Hall con-

ductivity is read off from the CS term for Aμ as σxy = k/(2π).
Alternatively, the presence of the CS terms can be read off from
the WZ action of either one of D5-branes, e.g.,

SWZ
D5 ∝

∫

D5

F ∧ F ∧ C2 =
∫

D5

A ∧ F ∧ (dC)3 (2)

for the external gauge field Aμ , where C2 is the RR 2-form from
the Dq-brane. When we change the sign of m by passing the Dq-
brane through the Dp-brane, the value of k jumps from ±1/2 to
∓1/2. If we instead put N f Dq-branes, we have N f copies of mas-
sive Dirac fermions ψi which couple with U(N f ) gauge fields Aμ

and Ãμ (when all Dq are coincident).
This brane construction can be extended to other even space

dimensions d = 2n by considering D5–Dq systems with q = 5,7
(Table 4). This setup gives rise to the fermion spectrum consisting
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Table 5
Dp–Dq systems for eight “real” symmetry classes, where p = 5 for classes C, D, CI, DIII, and p = 4 for classes AII, AI, CII, BDI. For classes AII, AI, CII, BDI, the O8-plane extends
except x5.

0 1 2 3 4 5 6 7 8 9 d C (O9−) D (O9+)

D5 × × × × × ×
D3 × × × × 0 0 Z2 (2 Mj)
D4 × × × × × 1 0 Z2 (1 Mj)
D5 × × × × × × 2 Z (4 Mj) Z (1 Mj)
D6 × × × × × × × 3 0 0
D7 × × × × × × × × 4 Z2 (2 Di) 0

0 1 2 3 4 5 6 7 8 9 d CI (O9−) DIII (O9+)

D5 × × × × × ×
D2 × × × 0 0 0
D3 × × × × 1 0 Z2 (2 Mj)
D4 × × × × × 2 0 Z2 (2 Mj)
D5 × × × × × × 3 Z (4 Mj) Z (1 Mj)

0 1 2 3 4 5 6 7 8 9 d AII (O8−) AI (O8+)

D4 × × × × ×
D4 × × × × × 0 Z (4 Mj) Z (1 Mj)
D5 × × × × × × 1 0 0
D6 × × × × × × × 2 Z2 (4 Mj) 0
D7 × × × × × × × × 3 Z2 (2 Mj) 0
D8 × × × × × × × × × 4 Z (1 Di) Z (1 Di)

0 1 2 3 4 5 6 7 8 9 d CII (O8−) BDI (O8+)

D4 × × × × ×
D3 × × × × 0 0 Z2 (2 Mj)
D4 × × × × × 1 Z (4 Mj) Z (1 Mj)
D5 × × × × × × 2 0 0
D6 × × × × × × × 3 Z2 (4 Mj) 0
D7 × × × × × × × × 4 Z2 (2 Di) 0
of one Dirac fermion per Dq-brane, and the CS terms of the form
∝ k

∫
A ∧ F n . All of these brane configurations are identified with

class A TIs, which are characterized by the absence of any discrete
symmetries.

Now let us turn to AIII, which is characterized by the pres-
ence of SLS. We argue that SLS is equivalent to an invariance of
the brane configurations under inversion of a coordinate in the
Dirichlet–Dirichlet (DD) directions of open strings between the D5-
and Dq-branes. One way to realize this is to assume two DD direc-
tions, say, x1 and x9, and impose x1 = 0. Indeed such a configura-
tion is obtained by taking T-dual of class A configurations (Table 4).
Again, the fermion spectrum consists of two Majorana fermions
(= one Dirac fermion) for all dimensions, and the mass of the
fermion is, again, proportional to �x9.

In our setup in general, the number of Neumann–Neumann
(NN) directions #NN is equal to the space–time dimensions d + 1
of TIs/TSCs. On the other hand, #DD represents the number of pos-
sible mass deformations: it is one if there is no SLS (class A), while
it is two in the presence of SLS. Finally, #ND is determined by #NN
and #DD via the relation #ND = 10 − #NN − #DD. Note also that
the T-dual in any ND directions does not change #NN, #DD and
#ND and thus is a redundant operation.

3. Real case

To realize eight “real” symmetry classes in string theory, we
need to implement TRS and PHS. To preserve PHS, we require the
internal gauge field Ãμ is not independent of its complex conju-
gate. This is the same as the orientation (Ω) projection in string
theory.

To realize TRS, we recall that it can be viewed as a product
of PHS and SLS [9]. As SLS can be imposed as a parity symmetry
in string theory, we can interpret TRS as the orientifold projec-
tion.

Let us start with class C and D, which are characterized by the
presence of PHS but lack of TRS. We take an Ω projection of the
class A setup. Note that there are two types of Ω projections, rep-
resented by two types of O9-plane, i.e., O9− (orthogonal) and O9+
(symplectic). While only O9− leads to supersymmetric type I string
theory, here we consider both because the T-dual of O9+ is equiva-
lent to Op+ planes (p � 8) in type II string theory. We realize class
C and class D TSCs by considering a D5-brane which extends in the
x0,1,2,3,4,5 directions, in the presence of an O9-plane. As before,
we put a Dq-brane with q = d + 3 so that there are d + 1 com-
mon directions (Table 5). For class AII and AI, characterized by the
presence of TRS but lack of PHS, we take the orientifold projection
which leads to an O8-plane in type IIA theory [22]. By choosing
(p,q) = (4,d + 4), we obtain the brane configuration given in the
third table in Table 5. Though the D-brane charges with an Op-
plane for p � 8 are classified by KR-theory, the same result can be
obtained from KO-theory via T-duality for our purpose [22]. Finally,
the remaining four classes, CII, BDI, CI and DIII can be obtained
by taking DD directions to be two instead of one. SLS is imposed
by requiring x9 = 0 for all of these classes. These are O8- or O9-
projection of the class AIII setup (Table 5).

For these D-brane configurations, we chose a Dp-brane to be
a standard one with the integer K-theory charge so that it is re-
garded as the background (bulk) material itself. Then, we find
that the K-theory charge of the Dq-branes (shown in the last two
columns in Table 5) agrees precisely with the corresponding clas-
sification of TIs/TSCs (Table 1). Moreover, the fermion content of
these string theory realizations (denoted in the last two columns
in Table 5 either by “N f Mj” or “N f Di” with N f an integer) can
be compared with the Dirac representative of TIs/TSCs constructed
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Table 6
Dp–Dq systems in the presence of an O-plane; “d � 2” means the constraint of
possible spatial dimensions d in the brane systems due to the existence of open
string tachyons. “Chiral” denotes the existence of chiral fermions and is interpreted
as boundary (edge) states. The horizontal direction is shifted by a T-duality in the
NN direction.

#DD (O9− , O9+) (O8− , O8+) (O7− , O7+) (O6− , O6+)

0 Chiral
1 (C, D) (AII, AI)
2 (CI, DIII) (CII, BDI) (DIII, CI)
3 d � 2 d � 2 d � 2 d � 2
4 d � 1 d � 1 d � 1 d � 1

in Ref. [9]. Indeed, they agree completely. It is also interesting to
note that, for the Dirac representative of TIs/TSCs, the momentum
dependence of the projection operator, which is one of key ingredi-
ents in the classification of TIs/TSCs [9], looks quite similar to the
spatial profile of the tachyon field in string theory in real space
[12].

We now describe the field theory content of the Dp–Dq sys-
tems charges in more details. First, for the Z TIs/TSCs on the di-
agonal in Table 1 (“primary series”), the internal gauge group is
O(1) = Z2. In particular, for class D in d = 2, our string theory re-
alization corresponds to (a proper supersymmetric generalization
of) the honeycomb lattice Kitaev model in the weak pairing (non-
Abelian) phase [17]. Similarly, for class DIII in d = 3, it corresponds
to an interacting bosonic model on the diamond lattice [18].

For Z2 TIs/TSCs of the first descendant of the primary series,
i.e., BDI (d = 0), D (d = 1), DIII (d = 2), and AII (d = 3), the internal
gauge group is O(1) = Z2 (Table 3).

For Z2 TIs/TSCs of the second descendant of the primary series,
i.e., D (d = 0), DIII (d = 1), AII (d = 2), and CII (d = 3), the internal
gauge group is U(1). For D and DIII, the U(1) unitary gauge field
couples to two real fermions which can be combined into a sin-
gle complex field. For AII and CII, the fermion spectrum consists of
4 Mj. In this case, the external gauge field is Sp(1) = SU(2), which
couples to a doublet, ψ↑/↓ . Each has 2 Mj (= 1 Di) degrees of free-
dom and couples to a U(1) internal gauge field as follows:

L = ψ̄
[
γ μ(i∂μ − Aμ − Ãμ) − mM

]
ψ + · · · , (3)

where ψ = (ψ↑,ψ↓)T , and M is a diagonal mass matrix whose
eigenvalue is ±1 for ψ↑/↓ , respectively.

Finally, for TIs/TSCs labeled by 2Z, i.e., AII (d = 0), CII (d = 1),
C (d = 2), and CI (d = 3), the gauge group is G × G̃ = SU(2)×SU(2),
with 4 Mj fermions in bi-fundamental.

Even though the ten-dimensional string theories in the bulk
are supersymmetric, our brane setups are not in general. When
#ND = 4 with Z charge, they exceptionally preserve a quarter of
supersymmetries. In general, when #ND = 4, there exist massive
bosons in addition to the massive fermions. This happens when
d = 4 for A, C, AI, AII, and when d = 3 for AIII, CII, CI and DIII. Since
#NN > 4 for all the other branes systems, we only have fermions
from open strings between the Dp- and Dq-branes and there are
no tachyons.

We can take the T-duality further in NN directions. However,
this lead to theories with different properties than TIs/TSCs (Ta-
ble 6). Note that we have succeeded to realize all TIs/TSCs in space
dimensions d � 4.

4. Boundary of TIs/TSCs

A defining property of TIs/TSCs is the appearance of stable
gapless degrees of freedom, when the system is terminated by
a (d − 1)-dimensional boundary. In our brane construction, the
sample boundary can be constructed by bending the Dp-brane to-
Fig. 1. A boundary of a TI/TSC as a brane intersection.

ward the Dq-brane, to create an intersection between these branes
(Fig. 1). This leads to a position-dependent fermion mass, which
changes its sign at the intersection. This increases #ND by two
and the correct number of massless fermions appears at the inter-
section.

5. Conclusions

The main conclusion of this Letter is that there is a one-to-one
correspondence between the tachyon-free Dp–Dq systems and the
ten classes of topological insulators in d � 4 dimensions. Indeed,
we explicitly constructed the corresponding ten classes of Dp–Dq
brane configurations in superstring theory. Two out of ten are re-
alized in type II string theory without orientifolds, while the other
eight require orientifolds. The K-theory charges of the Dq-branes
agree with that of the topological insulators.

One may wonder if there are other tachyon-free Dp–Dq sys-
tems which have not been considered in this Letter. However, it
turns out that their low-energy theories just correspond to mul-
tiple copies of the ten classes of topological insulators (for details
refer to [15]).

Since a topological insulator has a mass gap in the bulk, the
distance between the Dp and Dq is taken to be non-vanishing in
its corresponding D-brane system. When we discuss the boundary
of a TI/TSC, however, the Dp-brane is bent toward the Dq-brane
and thus Dp and Dq are intersecting with each other. Therefore
massless fermions appear at the intersection and they are identi-
fied with the boundary modes (or edge modes).

We can also consider holographic descriptions of these systems
by extending the constructions in [20,21] in principle, though it is
not possible to take the large-N limit of Z2 charged D-branes.
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