20 research outputs found

    Clinical outcomes of S2 Alar-Iliac screw technique in the treatment of severe spinal sagittal imbalance: a retrospective 2-year follow-up study

    Get PDF
    Background: The treatment of adult spinal deformity (ASD) remains a significant challenge, especially in elderly patients. This study aimed to evaluate the outcomes of the S2AI screw technique in the treatment of severe spinal sagittal imbalance with a minimum 2-year follow-up.Methods: From January 2015 to December 2018, 23 patients with severe degenerative thoracolumbar kyphosis who underwent placement of S2AI screws for long segment fusion were retrospectively reviewed. Patients were divided into group A (no mechanical complications, 13 cases) and group B (with mechanical complications, 10 cases) according to the occurrence of mechanical complications at the last follow-up. Radiographic parameters were compared between groups preoperatively, 1 month postoperatively and at the last follow-up. Risk factors for mechanical complications were analyzed.Results: The incidence of mechanical complications was 43.5% and the revision rate was 17.4%. At 1 month postoperatively, sagittal correction was better in group A than in group B (p<0.05). The area under the curve for predicting mechanical complications of sacral slope (SS), lumbar lordosis (LL), PI (pelvic incidence)-LL at 1 month postoperatively were 0.762 (p=0.035), 0.896 (p=0.001) and 0.754 (p=0.041) respectively and the best cut-off values were 24.1Β°, 32.8Β°and 12.0Β°. The sagittal correction of both groups was partially lost at the last follow-up.Conclusions: A high incidence of mechanical complications was observed in long-segment corrective surgery with the S2AI screw technique for severe spinal sagittal imbalance. Inadequate sagittal correction is a risk factor for the development of mechanical complications.

    Molecular Characterization of Highly Pathogenic H5N1 Avian Influenza A Viruses Isolated from Raccoon Dogs in China

    Get PDF
    The highly pathogenic avian influenza H5N1 virus can infect a variety of animals and continually poses a threat to animal and human health. While many genotypes of H5N1 virus can be found in chicken, few are associated with the infection of mammals. Characterization of the genotypes of viral strains in animal populations is important to understand the distribution of different viral strains in various hosts. This also facilitates the surveillance and detection of possible emergence of highly pathogenic strains of specific genotypes from unknown hosts or hosts that have not been previously reported to carry these genotypes.Two H5N1 isolates were obtained from lung samples of two raccoon dogs that had died from respiratory disease in China. Pathogenicity experiments showed that the isolates were highly pathogenic to chicken. To characterize the genotypes of these viruses, their genomic sequences were determined and analyzed. The genetic contents of these isolates are virtually identical and they may come from the same progenitor virus. Phylogenetic analysis indicated that the isolates were genetically closely related to genotype V H5N1 virus, which was first isolated in China in 2003, and were distinct from the dominant virus genotypes (e.g. genotype Z) of recent years. The isolates also contain a multibasic amino acid motif at their HA cleavage sites and have an E residue at position 627 of the PB2 protein similar to the previously-identified avian viruses.This is the first report that genotype V H5N1 virus is found to be associated with a mammalian host. Our results strongly suggest that genotype V H5N1 virus has the ability to cross species barriers to infect mammalian animals. These findings further highlight the risk that avian influenza H5N1 virus poses to mammals and humans, which may be infected by specific genotypes that are not known to infect these hosts

    Hydrogen sulfide is expressed in the human and the rat cultured nucleus pulposus cells and suppresses apoptosis induced by hypoxia.

    No full text
    Apoptosis plays pivotal role in the pathogenesis of degenerative disc diseases, which is the primary contributor to low back pain. Although the role of hydrogen sulfide (H2S) in cell apoptosis is well appreciated, the effects and mechanism that H2S regulates the program death of intervertebral disc cell are not yet elucidated. In this study, we utilized the nucleus pulposus (NP) from patients with lumbar disc herniation to investigate the relationship between endogenous H2S and NP cells apoptosis in human. Furthermore, we analyzed primary rat NP cells to study the effects of exogenous H2S on hypoxia induced cell apoptosis. Human NP samples were obtained from patients with lumbar disc herniation and were divided into uncontained and contained herniation groups. Using immunohistochemistry staining and sulphur-sensitive electrode, we detected the expression of cystathionine-Ξ²-synthase (CBS) and cystathionine Ξ³-lyase (CSE), as well as the production of endogenous H2S in human NP. Tunel staining showed increased apoptosis in NP from herniated disc; and there was significant correlation between H2S generation and apoptosis in human NP. CoCl2 was then used to induce hypoxia in cultured primary rat NP cells. Annexin V staining indicated that exogenous NaHS attenuated hypoxia induced apoptosis in rat NP cells. Furthermore, hypoxia significantly increased the levels of multiple apoptosis associated proteins (Fas, Cytochromes C, Caspase 9 and cleaved-Caspase-3) in cells, which were eliminated by NaHS. Our study demonstrates the presence of endogenous H2S in human intervertebral disc; and the endogenous H2S generation rate is associated with NP apoptosis in herniated disc. In vitro study showes exogenous H2S donor attenuates hypoxia induced apoptosis in primary rat NP cells. Thus, our work provides insights that H2S may have beneficial effects in treating degenerative disc diseases

    The H<sub>2</sub>S production in human nucleus pulposus tissue.

    No full text
    <p>The H<sub>2</sub>S production in human NP biopsy were detective using sulphur-sensitive electrode. There is significant increased H<sub>2</sub>S in both contained and uncontained herniation groups compared to control. Furthermore, NP cells isolated from patients in uncontained group show significant higher H<sub>2</sub>S production compared to contained group. (* p<0.05; *** p<0.001; n = 5 in control; n = 20 in contained and uncontained groups).</p

    TUNEL staining in human nucleus pulposus tissue.

    No full text
    <p><b>(A)</b> Representative images of TUNEL staining (x200). <b>(B)</b> The percentage of TUNEL positive cells are higher in contained herniation group and in uncontained herniation group. In addition, the proportion of apoptotic cells is significant higher in uncontained herniation group compared to the contained group. <b>(C)</b> A significant correlation is observed between H<sub>2</sub>S generation rate and cells apoptosis in NP samples (* p<0.05; ** p<0.01; *** p<0.001; n = 5 in control; n = 20 in contained and uncontained groups).</p

    Identification of cultured rat NP cells and immunofluorescent detection of CBS and CSE in rat NP cells.

    No full text
    <p>Images indicate the third passage of rat NP cells are positive in type II colleagen <b>(A)</b> and aggrecan <b>(B)</b>. Transmission electron microscope show NP cells contain endoplasmic reticulum, Golgi complexes, free ribosomes and several multilamellar bodies <b>(C)</b>. Immunofluorescent staining showed CBS and CSE are expressed in the cytoplasm of the rat NP cells <b>(D)</b> (n = 6/group; CBS: cystathionine-Ξ²-synthase; CSE: cystathionine Ξ³-lyase).</p

    Activating C-Coordinated Iron of Iron Hexacyanoferrate for Zn Hybrid-Ion Batteries with 10 000-Cycle Lifespan and Superior Rate Capability

    No full text
    Prussian blue analogue (PBA)-type metal hexacyanoferrates are considered as significant cathodes for zinc batteries (ZBs). However, these PBA-type cathodes, such as cyanogroup iron hexacyanoferrate (FeHCF), suffer from ephemeral lifespan (<= 1000 cycles), and inferior rate capability (1 A g(-1)). This is because the redox active sites of multivalent iron (Fe(III/II)) can only be very limited activated and thus utilized. This is attributed to the spatial resistance caused by the compact cooperation interaction between Fe and the surrounded cyanogroup, and the inferior conductivity. Here, it is found that high-voltage scanning can effectively activate the C-coordinated Fe in FeHCF cathode in ZBs. Thanks to this activation, the Zn-FeHCF hybrid-ion battery achieves a record-breaking cycling performance of 5000 (82% capacity retention) and 10 000 cycles (73% capacity retention), respectively, together with a superior rate capability of maintaining 53.2% capacity at superhigh current density of 8 A g(-1) (approximate to 97 C). The reversible distortion and recovery of the crystalline structure caused by the (de)insertion of zinc and lithium ions is revealed. It is believed that this work represents a substantial advance on PBA electrode materials and may essentially promote application of PBA materials

    Vertically Aligned Sn(4+)Preintercalated Ti(2)CT(X)MXene Sphere with Enhanced Zn Ion Transportation and Superior Cycle Lifespan

    No full text
    While 2D MXenes have been widely used in energy storage systems, surface barriers induced by restacking of nanosheets and the limited kinetics resulting from insufficient interlayer spacing are two unresolved issues. Here an Sn(4+)preintercalated Ti(2)CT(X)with effectively enlarged interlayer spacing is synthesized. The preintercalated Ti(2)CT(X)is aligned on a carbon sphere to further enhance ion transportation by shortening the ion diffusion path and enhancing the reaction kinetics. As a result, when paired with a Zn anode, 12 500 cycles, which equals 2 800 h cycle time, and 5% capacity fluctuation are obtained, surpassing all reported MXene-based aqueous electrodes. At 0.1 A g(-1), the capacity reaches 138 mAh g(-1), and 92 mAh g(-1)remains even at 5 A g(-1). In addition, the low anti-self-discharge rate of 0.989 mV h(-1)associated with a high capacity retention of 80.5% over 548 h is obtained. Moreover, the fabricated quasi-solid capacitor based on a hydrogel film electrolyte exhibits good mechanical deformation and weather resistance. This work employs both preintercalation and alignment to MXene and achieves enhanced ion diffusion kinetics in an aqueous zinc ion capacitors (ZICs) system, which may be applied to other MXene batteries for enhanced performance
    corecore