69 research outputs found

    Cloning and characterization of two subunits of calcineurin cDNA in naked carp (Gymnocypris przewalskii) from Lake Qinghai, China

    Get PDF
    The naked carp (Gymnocypris przewalskii), a native teleost, plays an important role in maintenance of the ecological balance in the system of Lake Qinghai (altitude, 3.2 km) on the Qinghai-Tibet Plateau in China. Calcineurin (CN) is the only member of the serine/threonine phosphatase family that can be activated by both Ca2+ and calmodulin (CaM) and involved in many important physiological processes such as salt tolerance/adaption. In this report, cDNAs of CN catalytic subunit paralogue isoforms: GpCAα (GenBank accession no.JQ407043), GpCAγ (GenBank accession no. JQ407043), and CN regulatory subunit (GpCB) (GenBank accession no. JQ410473), were isolated from Gymnocypris przewalskii and their expression patterns in embryos developmentwere characterized. Gene expression profile demonstrated that GpCA and GpCB mRNA was distributed ubiquitously in all embryonic stages and showed decline until final stage of development. Immunohistologicalanalysis revealed CN localization in different tissues including kidney, heart, brain, spermary, and gill. Collectively, these results provide molecular basis and clues to further understand the role of CN during embryos development and its function in tissues for the adaptation mechanism of naked carp

    Origin of mitochondrial DNA diversity of domestic yaks

    Get PDF
    BACKGROUND: The domestication of plants and animals was extremely important anthropologically. Previous studies have revealed a general tendency for populations of livestock species to include deeply divergent maternal lineages, indicating that they were domesticated in multiple, independent events from genetically discrete wild populations. However, in water buffalo, there are suggestions that a similar deep maternal bifurcation may have originated from a single population. These hypotheses have rarely been rigorously tested because of a lack of sufficient wild samples. To investigate the origin of the domestic yak (Poephagus grunnies), we analyzed 637 bp of maternal inherited mtDNA from 13 wild yaks (including eight wild yaks from a small population in west Qinghai) and 250 domesticated yaks from major herding regions. RESULTS: The domestic yak populations had two deeply divergent phylogenetic groups with a divergence time of > 100,000 yrs BP. We here show that haplotypes clustering with two deeply divergent maternal lineages in domesticated yaks occur in a single, small, wild population. This finding suggests that all domestic yaks are derived from a single wild gene pool. However, there is no clear correlation of the mtDNA phylogenetic clades and the 10 morphological types of sampled yaks indicating that the latter diversified recently. Relatively high diversity was found in Qinghai and Tibet around the current wild distribution, in accordance with previous suggestions that the earliest domestications occurred in this region. Conventional molecular clock estimation led to an unrealistic early dating of the start of the domestication. However, Bayesian estimation of the coalescence time allowing a relaxation of the mutation rate are better in agreement with a domestication during the Holocene as supported by archeological records. CONCLUSION: The information gathered here and the previous studies of other animals show that the demographic histories of domestication of livestock species were highly diverse despite the common general feature of deeply divergent maternal lineages. The results further suggest that domestication of local wild prey ungulate animals was a common occurrence during the development of human civilization following the postglacial colonization in different locations of the world, including the high, arid Qinghai-Tibetan Plateau

    Transcriptome Analysis Provides Insights Into the Adaptive Responses to Hypoxia of a Schizothoracine Fish (Gymnocypris eckloni)

    Get PDF
    The schizothoracine fish endemic to the Qinghai-Tibetan Plateau are comparatively well adapted to aquatic environments with low oxygen partial pressures. However, few studies have used transcriptomic profiling to investigate the adaptive responses of schizothoracine fish tissues to hypoxic stress. This study compared the transcriptomes of Gymnocypris eckloni subjected to 72 h of hypoxia (Dissolved oxygen, DO = 3.0 ± 0.1 mg/L) to those of G. eckloni under normoxia (DO = 8.4 ± 0.1 mg/L). To identify the potential genes and pathways activated in response to hypoxic stress, we collected muscle, liver, brain, heart, and blood samples from normoxic and hypoxic fish for RNA-Seq analysis. We annotated 337,481 gene fragments. Of these, 462 were differentially expressed in the hypoxic fish as compared to the normoxic fish. Under hypoxia, the transcriptomic profiles of the tissues differed, with muscle the most strongly affected by hypoxia. Our data indicated that G. eckloni underwent adaptive changes in gene expression in response to hypoxia. Several strategies used by G. eckloni to cope with hypoxia were similar to those used by other fish, including a switch from aerobic oxidation to anaerobic glycolysis and the suppression of major energy-requiring processes. However, G. eckloni used an additional distinct strategy to survive hypoxic environments: a strengthening of the antioxidant system and minimization of ischemic injury. Here, we identified several pathways and related genes involved in the hypoxic response of the schizothoracine fish. This study provides insights into the mechanisms used by schizothoracine fish to adapt to hypoxic environments

    Characterization of ARF-BP1/HUWE1 Interactions with CTCF, MYC, ARF and p53 in MYC-Driven B Cell Neoplasms

    Get PDF
    Transcriptional activation of MYC is a hallmark of many B cell lineage neoplasms. MYC provides a constitutive proliferative signal but can also initiate ARF-dependent activation of p53 and apoptosis. The E3 ubiquitin ligase, ARF-BP1, encoded by HUWE1, modulates the activity of both the MYC and the ARF-p53 signaling pathways, prompting us to determine if it is involved in the pathogenesis of MYC-driven B cell lymphomas. ARF-BP1 was expressed at high levels in cell lines from lymphomas with either wild type or mutated p53 but not in ARF-deficient cells. Downregulation of ARF-BP1 resulted in elevated steady state levels of p53, growth arrest and apoptosis. Co-immunoprecipitation studies identified a multiprotein complex comprised of ARF-BP1, ARF, p53, MYC and the multifunctional DNA-binding factor, CTCF, which is involved in the transcriptional regulation of MYC, p53 and ARF. ARF-BP1 bound and ubiquitylated CTCF leading to its proteasomal degradation. ARF-BP1 and CTCF thus appear to be key cofactors linking the MYC proliferative and p53-ARF apoptotic pathways. In addition, ARF-BP1 could be a therapeutic target for MYC-driven B lineage neoplasms, even if p53 is inactive, with inhibition reducing the transcriptional activity of MYC for its target genes and stabilizing the apoptosis-promoting activities of p53

    Convergent, Parallel and Correlated Evolution of Trophic Morphologies in the Subfamily Schizothoracinae from the Qinghai-Tibetan Plateau

    Get PDF
    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium

    Get PDF
    Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable

    Physiological, metabolomic, and transcriptomic reveal metabolic pathway alterations in Gymnocypris przewalskii due to cold exposure

    No full text
    Abstract Teleost fish have evolved various adaptations that allow them to tolerate cold water conditions. However, the underlying mechanism of this adaptation is poorly understood in Tibetan Plateau fish. RNA-seq combined with liquid chromatography‒mass spectrometry (LC‒MS/MS) metabolomics was used to investigate the physiological responses of a Tibetan Plateau-specific teleost, Gymnocypris przewalskii, under cold conditions. The 8-month G. przewalskii juvenile fish were exposed to cold (4 ℃, cold acclimation, CA) and warm (17 ℃, normal temperature, NT) temperature water for 15 days. Then, the transcript profiles of eight tissues, including the brain, gill, heart, intestine, hepatopancreas, kidney, muscle, and skin, were evaluated by transcriptome sequencing. The metabolites of the intestine, hepatopancreas, and muscle were identified by LC‒MS/MS. A total of 5,745 differentially expressed genes (DEGs) were obtained in the CA group. The key DEGs were annotated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The DEGs from the eight tissues were significantly enriched in spliceosome pathways, indicating that activated alternative splicing is a critical biological process that occurs in the tissues to help fish cope with cold stress. Additionally, 82, 97, and 66 differentially expressed metabolites were identified in the intestine, hepatopancreas, and muscle, respectively. Glutathione metabolism was the only overlapping significant pathway between the transcriptome and metabolome analyses in these three tissues, indicating that an activated antioxidative process was triggered during cold stress. In combination with the multitissue transcriptome and metabolome, we established a physiology-gene‒metabolite interaction network related to energy metabolism during cold stress and found that gluconeogenesis and long-chain fatty acid metabolism played critical roles in glucose homeostasis and energy supply

    Comparison of Phenols Content and Antioxidant Activity of Fruits from Different Maturity Stages of <i>Ribes stenocarpum</i> Maxim

    No full text
    Differences in the content of nine phenols and the antioxidant capacity of Ribes stenocarpum Maxim (RSM) fruits at different stages of maturity were investigated, and the extraction process of polyphenols from RSM was also optimized using Box-Behnken design method. Results showed that the content of the nine phenols varied considerably at different ripening stages; catechin, chlorogenic acid, coumaric acid, and ferulic acid were abundant in immature fruits but decreased with fruit ripening, whereas the levels of rosemary acid and querctin acid were low in immature fruits and increased with time, reaching the highest value after the fruit was completely mature. The phenols extracted from RSM fruits possessed good antioxidant activities for effective and rapid scavenging of DPPH and ABTS free radicals, as well as intracellular ROS. Analysis of the phenols content at different maturity stages indicated that the unripe fruits had significantly higher polyphenols content than mature fruits. Consequently, unripe fruits possessed higher antioxidant activities. According to the overall results of the extraction process optimization, the selected optimal conditions for extracting polyphenols from RSM were as follows: extraction time, 95 min; solvent concentration, 60%; ratio of sample to solvent, 1:25
    • …
    corecore