650 research outputs found
Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix
We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic-co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy
Identification of microRNAs Involved in the Host Response to Enterovirus 71 Infection by a Deep Sequencing Approach
Role of microRNA (miRNA) has been highlighted in pathogen-host interactions recently. To identify cellular miRNAs involved in the host response to enterovirus 71 (EV71) infection, we performed a comprehensive miRNA profiling in EV71-infected Hep2 cells through deep sequencing. 64 miRNAs were found whose expression levels changed for more than 2-fold in response to EV71 infection. Gene ontology analysis revealed that many of these mRNAs play roles in neurological process, immune response, and cell death pathways, which are known to be associated with the extreme virulence of EV71. To our knowledge, this is the first study on host miRNAs expression alteration response to EV71 infection. Our findings supported the hypothesis that certain miRNAs might be essential in the host-pathogen interactions
Tetrakis(triphenylphosphane-κP)silver(I) tetrafluoridoborate
The title complex, [Ag(C18H15P)4]BF4, was prepared by the reaction of silver(I) tetrafluoridoborate and triphenylphosphane in the presence of 1,2-bis(pyridin-2-yl)ethylene. The AgI atom is tetrahedrally coordinated by four P atoms from triphenylphosphane (PPh3) ligands. Due to symmetry, the tetrafluoridoborate anion is disordered over three positions (each with one third occupancy). The tetrafluoridoborate anion does not coordinate to the AgI atom
4-(4-Chlorophenyl)-6-(methylsulfanyl)pyrimidin-2-amine
In the title compound, C11H10ClN3S, the dihedral angle between the benzene and pyrimidine rings is 3.99 (4)°. In the crystal, intermolecular N—H⋯N hydrogen bonds link the molecules into ribbons of R
2
2(8) rings parallel to [100]. Weak C—H⋯S contacts connect adjacent ribbons into a two-dimensional undulating layer-like structure extending parallel to (110). The benzene and pyrimidine rings of adjacent molecules have the offset face-to-face π–π stacking interactions in a zigzag fashion along the c axis, with perpendicular ring distances of 3.463 and 3.639 Å, and a dihedral angle between the planes of 3.99 (2)°. The distance between the ring centroids is 4.420 (2) Å
High-Throughput Sequencing of MicroRNAs in Adenovirus Type 3 Infected Human Laryngeal Epithelial Cells
Adenovirus infection can cause various illnesses depending on the infecting serotype, such as gastroenteritis, conjunctivitis, cystitis, and rash illness, but the infection mechanism is still unknown. MicroRNAs (miRNA) have been reported to play essential roles in cell proliferation, cell differentiation, and pathogenesis of human diseases including viral infections. We analyzed the miRNA expression profiles from adenovirus type 3 (AD3) infected Human laryngeal epithelial (Hep2) cells using a SOLiD deep sequencing. 492 precursor miRNAs were identified in the AD3 infected Hep2 cells, and 540 precursor miRNAs were identified in the control. A total of 44 miRNAs demonstrated high expression and 36 miRNAs showed lower expression in the AD3 infected cells than control. The biogenesis of miRNAs has been analyzed, and some of the SOLiD results were confirmed by Quantitative PCR analysis. The present studies may provide a useful clue for the biological function research into AD3 infection
Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo
INTRODUCTION: Breast cancer is the leading cause of cancer death in women worldwide. Elevated expression of c-Myc is a frequent genetic abnormality seen in this malignancy. For a better understanding of its role in maintaining the malignant phenotype, we used RNA interference (RNAi) directed against c-Myc in our study. RNAi provides a new, reliable method to investigate gene function and has the potential for gene therapy. The aim of the study was to examine the anti-tumor effects elicited by a decrease in the protein level of c-Myc by RNAi and its possible mechanism of effects in MCF-7 cells. METHOD: A plasmid-based polymerase III promoter system was used to deliver and express short interfering RNA (siRNA) targeting c-myc to reduce its expression in MCF-7 cells. Western blot analysis was used to measure the protein level of c-Myc. We assessed the effects of c-Myc silencing on tumor growth by a growth curve, by soft agar assay and by nude mice experiments in vivo. Standard fluorescence-activated cell sorter analysis and TdT-mediated dUTP nick end labelling assay were used to determine apoptosis of the cells. RESULTS: Our data showed that plasmids expressing siRNA against c-myc markedly and durably reduced its expression in MCF-7 cells by up to 80%, decreased the growth rate of MCF-7 cells, inhibited colony formation in soft agar and significantly reduced tumor growth in nude mice. We also found that depletion of c-Myc in this manner promoted apoptosis of MCF-7 cells upon serum withdrawal. CONCLUSION: c-Myc has a pivotal function in the development of breast cancer. Our data show that decreasing the c-Myc protein level in MCF-7 cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, and imply the therapeutic potential of RNAi on the treatment of breast cancer by targeting overexpression oncogenes such as c-myc, and c-myc might be a potential therapeutic target for human breast cancer
- …