193 research outputs found

    Analysis of limitations and metrology weaknesses of enterprise architecture (EA) measurement solutions & proposal of a COSMIC-based approach to EA measurement

    Get PDF
    The literature on enterprise architecture (EA) posits that EA is of considerable value for organizations. However, while the EA literature documents a number of proposals for EA measurement solutions, there is little evidence-based research supporting their achievements and limitations. This thesis aims at helping the EA community to understand the existing trends in EA measurement research and to recognize the existing gaps, limitations, and weaknesses in EA measurement solutions. Furthermore, this thesis aims to assist the EA community to design EA measurement solutions based on measurement and metrology best practices. The research goal of this thesis is to contribute to the EA body of knowledge by shaping new perspectives for future research avenues in EA measurement research. To achieve the research goal, the following research objectives are defined: 1. To classify the EA measurement solutions into specific categories in order to identify research themes and explain the structure of the research area. 2. To evaluate the EA measurement solutions from a measurement and metrology perspective. 3. To identify the measurement and metrology issues in EA measurement solutions. 4. To propose a novel EA measurement approach based on measurement and metrology guidelines and best practices. To achieve the first objective, this thesis conducts a systematic mapping study (SMS to help understand the state-of-the-art of EA measurement research and classify the research area in order to acquire a general understanding about the existing research trends. To achieve the second and third objectives, this thesis conducts a systematic literature review (SLR) to evaluate the EA measurement solutions from a measurement and metrology perspective, and hence, to reveal the weaknesses of EA measurement solutions and propose relevant solutions to these weaknesses. To perform this evaluation, we develop an evaluation process based on combining both the components of the evolution theory and the concepts of measurement and metrology best practices, such as ISO 15939. To achieve the fourth objective, we propose a mapping between two international standards: • COSMIC - ISO/IEC 19761: a method for measuring the functional size of software. • ArchiMate: a modelling language for EA. This mapping results in proposing a novel EA measurement approach that overcomes the weaknesses and limitations found in the existing EA measurement solutions. The research results demonstrate that: 1. The current publications on EA measurement are trending toward an increased focus on the “enterprise IT architecting” school of thought, lacks the rigorous terminology found in science and engineering and shows limited adoption of knowledge from other disciplines in the proposals of EA measurement solutions. 2. There is a lack of attention to attaining appropriate metrology properties in EA measurement proposals: all EA measurement proposals are characterized with insufficient metrology coverage scoring, theoretical and empirical definitions. 3. The proposed novel EA measurement approach demonstrates that it is handy for EA practitioners, and easy to adopt by organizations

    The Microfluidic Probe: Operation and Use for Localized Surface Processing

    Get PDF
    Microfluidic devices allow assays to be performed using minute amounts of sample and have recently been used to control the microenvironment of cells. Microfluidics is commonly associated with closed microchannels which limit their use to samples that can be introduced, and cultured in the case of cells, within a confined volume. On the other hand, micropipetting system have been used to locally perfuse cells and surfaces, notably using push-pull setups where one pipette acts as source and the other one as sink, but the confinement of the flow is difficult in three dimensions. Furthermore, pipettes are fragile and difficult to position and hence are used in static configuration only. The microfluidic probe (MFP) circumvents the constraints imposed by the construction of closed microfluidic channels and instead of enclosing the sample into the microfluidic system, the microfluidic flow can be directly delivered onto the sample, and scanned across the sample, using the MFP. . The injection and aspiration openings are located within a few tens of micrometers of one another so that a microjet injected into the gap is confined by the hydrodynamic forces of the surrounding liquid and entirely aspirated back into the other opening. The microjet can be flushed across the substrate surface and provides a precise tool for localized deposition/delivery of reagents which can be used over large areas by scanning the probe across the surface. In this video we present the microfluidic probe (MFP). We explain in detail how to assemble the MFP, mount it atop an inverted microscope, and align it relative to the substrate surface, and finally show how to use it to process a substrate surface immersed in a buffer

    Application of the artificial intelligence to the design of constructed wetlands for heavy metal removal

    Get PDF
    Current design of constructed wetland lacks essential parameters necessary to evaluate the removal of metals contained in water enters the system. Herein, for the first time, the artificial intelligence approach (Fuzzy Logic) is used to assess stochastic implication in the wetland systems. Bioavailable mercury was evaluated, using fuzzy logic approach, for different pH, initial concentration of inorganic mercury, and chloride concentration implied in the constructed wetlands. Fuzzy knowledge base was built based on results obtained from previous data: investigations that were performed in a greenhouse for floating plants, and previous computations for mercury speciation. Fuzzy Decision Support System (FDSS) used the knowledge bases to find out parameters that permit to generate the highest amount of bioavailable mercury for uptake by the floating plant. The fuzzy logic approach provided the required information on the capability of constructed wetland sediments to sorb mercury within the hazy conditions in the system. FDSS used the wetland knowledge bases to provide the final decision. Fuzzy knowledge bases were built manually on one stage and were generated genetically using Genetic Algorithm (GA) on the other stage, where the results in both stages show comprehensive and corresponding results of the soil performance in the system. The obtained information by the fuzzy logic approach supports into providing series of solutions for plant uptake and soil adsorption of mercury that represents the heavy metal removal from wastewater of the overall system, by which mathematical analyses and modeling were further established to set up constructed wetland design. The criterion of design assumes the removal process in wetlands is similar to a process that combines the treatment process in the attached growth reactor and the adsorption process in the granular activated carbon columns

    Authentication techniques in smart grid: a systematic review

    Get PDF
    Smart Grid (SG) provides enhancement to existing grids with two-way communication between the utility, sensors, and consumers, by deploying smart sensors to monitor and manage power consumption. However due to the vulnerability of SG, secure component authenticity necessitates robust authentication approaches relative to limited resource availability (i.e. in terms of memory and computational power). SG communication entails optimum efficiency of authentication approaches to avoid any extraneous burden. This systematic review analyses 27 papers on SG authentication techniques and their effectiveness in mitigating certain attacks. This provides a basis for the design and use of optimized SG authentication approaches

    Auditing for ISO 9001 requirements in the context of agile software processes

    Get PDF
    ISO 9001 demands of (software) organizations that a rigorous demonstration of their software processes be implemented and a set of guidelines followed at various levels of abstraction. What these organizations need to show, in other words, is that their software processes have been designed and implemented in a way that allows for a level of configuration and operation that complies with ISO 9001 requirements. For software organizations needing ISO 9001 certification, it is important that they establish a software process life cycle that can manage the requirements imposed by this certification standard. However, software organizations that develop their software products using the agile software processes, such as Extreme Programming (agile-XP), face a number of challenges in their effort to demonstrate that their process activities conform to ISO 9001 requirements, major ones being: product construction, traceability, and measurement. Agile software organizations must provide evidence of ISO 9001 conformity, and they need to develop their own procedures, tools, and methodologies to do so. As yet, there is no consensus on how to audit the agile software organization to ensure that their software processes have been designed and implemented in conformity with ISO 9001 requirements. Moreover, it is challenging to ensure that such lightweight documentation methodologies meet these requirements for certification purposes. The motivation of this research is to help software organizations that use agile software processes in their effort to meet the ISO 9001 certification requirements. This research project is also aimed at helping IS auditors extract auditing evidence that demonstrates conformity to the ISO 9001 requirements that must be met by agile software organizations. Extreme programming (agile-XP) has been selected for improvement as a candidate agile process. This selection was based on the literature indicating a higher adoption of agile-XP over other agile software processes. The goal of this research project is to improve the ability of the agile-XP process to meet the auditing requirements of ISO 9001. The goal of the research also focuses on helping agile software organizations in their effort to become ISO 9001 certified. The main objective of this research project is to design an auditing model that covers the measurement and traceability requirements of ISO 9001. The auditing model should provide IS auditors with auditing evidence that the software projects developed with the agile-XP process have fulfilled the requirements of ISO 9001. The objective also proposes several sub processes to enhance the early planning activities of agile-XP according to ISO 9001 requirements. To achieve these objectives, the main phases of the research methodology are: Investigation of the capability of agile-XP to achieve the requirements of ISO 9001 software process certification; modification of the early phases of agile-XP (i.e. release planning phase) using CMMI-DEV; and design of an auditing model for ISO 9001 traceability and measurement requirements. The main outcome of this research study, which is an auditing model that is aligned with the principles of agile-XP and focuses on ISO 9001 traceability and measurement requirements to provide the IS auditors with a methodological approach for the auditing process. The auditing model has been assessed based on case studies selected from the literature

    Intelligent novel MSW management system for biogas control in landfill

    Get PDF
    Controlling greenhouse gases at landfill is a great point of concern. This research aims to control methane and carbon dioxide by applying novel intelligent MSW management system. The intelligent MSW management system (Intelligent QEJ Bricks) proposed in this research provides new ideas about: landfill operation, material for biogas collection, biogas transport modeling, biogas mass transfer optimization, design configuration, and automatic control system. The operation of new system includes series of cells built subsequently with porous bricks that confines waste cells. This approach implies integrated operation system that combines waste disposal, biogas evacuation, and biogas control. Bricks are made up of hydrophobic recyclable material that might be available on waste disposal site. In this research, a recyclable hydrophobic polymer (Styrofoam) was tested at laboratory to check its functionality for biogas collection. The test procedure on polymer medium entails the following findings: the permeability, the conductivity and diffusion coefficients, the convective flowrate, and the diffusive flux through polymer medium for carbon dioxide and methane. The influence of parameters such as water content, porosity, temperature variation, pressure gradient, and concentration gradient on gas movement (diffusion and convection) was also analyzed. Information obtained from the laboratory tests were formulated as knowledge bases. The fuzzy logic implicated knowledge bases and specific rules to have the output that represents the gas transport rates in hydrophobic polymer medium for a wide range of various environmental parameters. Genetic algorithm is used to optimize a transfer function that represents solutions for transfer rates for different ratios of biogas mixture. The mass and volume of biogas within the landfill time of service are determined for designing hydrophobic porous bricks for any ratio of CH 4 :CO 2 in landfill. After having the cells finished and closed the configuration of the new system satisfies confining the waste with hydrophobic porous walls that surrounds the waste and captures all available biogas generated at the landfill. The design includes a system of valves evacuating biogas from porous walls of the bricks. The process of evacuation might link the valves with a blower that is connected with a storage tank or an energy generator. The valves are controlled by fuzzy logic system that is fed by sensors-data acquisition system. The output of automatic intelligent fuzzy system is dependent on the input data from the sensor-data acquisition system
    • …
    corecore