2,130 research outputs found

    The role of unsteadiness in direct initiation of gaseous detonations

    Get PDF
    An analytical model is presented for the direct initiation of gaseous detonations by a blast wave. For stable or weakly unstable mixtures, numerical simulations of the spherical direct initiation event and local analysis of the one-dimensional unsteady reaction zone structure identify a competition between heat release, wave front curvature and unsteadiness. The primary failure mechanism is found to be unsteadiness in the induction zone arising from the deceleration of the wave front. The quasi-steady assumption is thus shown to be incorrect for direct initiation. The numerical simulations also suggest a non-uniqueness of critical energy in some cases, and the model developed here is an attempt to explain the lower critical energy only. A critical shock decay rate is determined in terms of the other fundamental dynamic parameters of the detonation wave, and hence this model is referred to as the critical decay rate (CDR) model. The local analysis is validated by integration of reaction-zone structure equations with real gas kinetics and prescribed unsteadiness. The CDR model is then applied to the global initiation problem to produce an analytical equation for the critical energy. Unlike previous phenomenological models of the critical energy, this equation is not dependent on other experimentally determined parameters and for evaluation requires only an appropriate reaction mechanism for the given gas mixture. For different fuel–oxidizer mixtures, it is found to give agreement with experimental data to within an order of magnitude

    Ignition of thermally sensitive explosives between a contact surface and a shock

    Get PDF
    The dynamics of ignition between a contact surface and a shock wave is investigated using a one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing and contrasting the solutions with those of the ignition process between a piston and a shock, considered previously. The large activation energy asymptotic solutions are found to be qualitatively different from the piston driven shock case, in that thermal runaway first occurs ahead of the contact surface, and both forward and backward moving reaction waves emerge. These waves take the form of quasi-steady weak detonations that may later transition into strong detonation waves. For the finite activation energies considered in the numerical simulations, the results are qualitatively different to the asymptotic predictions in that no backward weak detonation wave forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance of the contact surface. The above conclusions are relevant to gas phase equation of state models. However, when a large polytropic index more representative of condensed phase explosives is used, the large activation energy asymptotic and finite activation energy numerical results are found to be in quantitative agreement

    Numerical experiments on short-term meteorological effects on solar variability

    Get PDF
    A set of numerical experiments was conducted to test the short-range sensitivity of a large atmospheric general circulation model to changes in solar constant and ozone amount. On the basis of the results of 12-day sets of integrations with very large variations in these parameters, it is concluded that realistic variations would produce insignificant meteorological effects. Any causal relationships between solar variability and weather, for time scales of two weeks or less, rely upon changes in parameters other than solar constant or ozone amounts, or upon mechanisms not yet incorporated in the model

    Modelling the evolution of distributions : an application to major league baseball

    Get PDF
    We develop Bayesian techniques for modelling the evolution of entire distributions over time and apply them to the distribution of team performance in Major League baseball for the period 1901-2000. Such models offer insight into many key issues (e.g. competitive balance) in a way that regression-based models cannot. The models involve discretizing the distribution and then modelling the evolution of the bins over time through transition probability matrices. We allow for these matrices to vary over time and across teams. We find that, with one exception, the transition probability matrices (and, hence, competitive balance) have been remarkably constant across time and over teams. The one exception is the Yankees, who have outperformed all other teams

    Structure and lattice dynamics of the wide band gap semiconductors MgSiN2_{2} and MgGeN2_{2}

    Get PDF
    We have determined the structural and lattice dynamical properties of the orthorhombic, wide band gap semiconductors MgSiN2_{2} and MgGeN2_{2} using density functional theory. In addition, we present structural properties and Raman spectra of a MgSiN2_{2} powder. The structural properties and lattice dynamics of the orthorhombic systems are compared to wurtzite AlN. We find clear differences in the lattice dynamics between MgSiN2_{2}, MgGeN2_{2} and AlN, for example we find that the highest phonon frequency in MgSiN2_{2} is about 100~cm−1^{-1} higher than the highest frequency in AlN and that MgGeN2_{2} is much softer. We also provide the Born effective charge tensors and dielectric tensors of MgSiN2_{2}, MgGeN2_{2} and AlN. Phonon related thermodynamic properties, such as the heat capacity and entropy, are in very good agreement with available experimental results.Comment: 9 pages, 11 figures, 6 table

    Exhaust of Underexpanded Jets from Finite Reservoirs

    Get PDF
    We examine the response of an underexpanded jet to a depleting, finite reservoir with experiments and simulations. An open-ended shock tube facility with variable reservoir length is used to obtain images of nitrogen and helium jet structures at successive instances during the blowdown from initial pressure ratios of up to 250. The reservoir and ambient pressures are simultaneously measured to obtain the instantaneous pressure ratio. We estimate the time-scales for jet formation and reservoir depletion as a function of the specific heat ratio of the gas and the initial pressure ratio. The jet structure formation time-scale is found to become approximately independent of pressure ratio for ratios greater than 50. In the present work, no evidence of time-dependence in the Mach disk shock location is observed for rates of pressure decrease associated with isentropic blowdown of a finite reservoir while the pressure ratio is greater than 15. The shock location in the finite- reservoir jet can be calculated from an existing empirical fit to infinite-reservoir jet data evaluated at the instantaneous reservoir pressure. For pressure ratios below 15, however, the present data deviate from a compilation of data for infinite-reservoir jets. A new fit is obtained to data in the lower pressure regime. The self-similarity of the jet structure is quantified and departure from similarity is noted to begin at pressure ratios lower than about 15, approximately the same ratio which limits existing empirical fits
    • …
    corecore