682 research outputs found
Methods in Mammary Gland Development and Cancer: the second ENDBC meeting - intravital imaging, genomics, modeling and metastasis
The second meeting of the European Network for Breast Development and Cancer (ENBDC) on 'Methods in Mammary Gland Development and Cancer' was held in April 2010 in Weggis, Switzerland. The focus was on genomics and bioinformatics, extracellular matrix and stroma-epithelial cell interactions, intravital imaging, the search for metastasis founder cells and mouse models of breast cancer
Generation of Germline-Competent Rat Induced Pluripotent Stem Cells
Recent progress in rat pluripotent stem cell technology has been remarkable. Particularly salient is the demonstration that embryonic stem cells (ESCs) in the rat (rESCs) can contribute to germline transmission, permitting generation of gene-modified rats as is now done using mouse ESCs (mESCs) or mouse induced pluripotent stem cells (iPSCs; miPSCs). However, determinations of whether rat iPSCs (riPSCs) can contribute to germ cells are not published. Here we report the germline competency of riPSCs.We generated riPSCs by transducing three mouse reprogramming factors (Oct3/4, Klf4, and Sox2) into rat somatic cells, followed by culture in the presence of exogenous rat leukemia inhibitory factor (rLIF) and small molecules that specifically inhibit GSK3, MEK, and FGF receptor tyrosine kinases. We found that, like rESCs, our riPSCs can contribute to germline transmission. Furthermore we found, by immunostaining of testis from mouse-rat interspecific chimeras with antibody against mouse vasa homolog, that riPSCs can contribute to embryonic development with chimera formation in mice (rat-mouse interspecific chimeras) and to interspecific germlines.Our data clearly demonstrate that using only three reprogramming factors (Oct3/4, Klf4, and Sox2) rat somatic cells can be reprogrammed into a ground state. Our generated riPSCs exhibited germline transmission in either rat-rat intraspecific or mouse-rat interspecific chimeras
Activation of the Fas/Fas ligand pathway in hypertensive renal disease in Dahl/Rapp rats
BACKGROUND: Hypertensive nephrosclerosis is the second most common cause of end-stage renal failure in the United States. The mechanism by which hypertension produces renal failure is incompletely understood. Recent evidence demonstrated that an unscheduled and inappropriate increase in apoptosis occurred in the Dahl/Rapp rat, an inbred strain of rat that uniformly develops hypertension and hypertensive nephrosclerosis; early correction of the hypertension prevents the renal injury. The present study examined the role of the Fas/FasL pathway in this process. METHODS: Young male Dahl/Rapp salt-sensitive (S) and Sprague-Dawley rats were fed diets that contained 0.3% or 8.0% NaCl diets. Kidneys were examined at days 7 and 21 of the study. RESULTS: An increase in Fas and FasL expression was observed in glomerular and tubular compartments of kidneys of hypertensive S rats, whereas dietary salt did not change expression of either of these molecules in normotensive Sprague-Dawley rats. Associated with this increase was cleavage of Bid and activation of caspase-8, the initiator caspase in this apoptotic pathway, by day 21 of the study. CONCLUSIONS: Augmented expression of apoptotic signaling by the Fas/FasL pathway occurred during development of end-stage renal failure in this model of hypertensive nephrosclerosis
Efficient Differentiation of Embryonic Stem Cells into Mesodermal Precursors by BMP, Retinoic Acid and Notch Signalling
The ability to direct differentiation of mouse embryonic stem (ES) cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA), the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4) both favoured self-renewal of ES cells and induced differentiation into a Desmin and Nestin double positive cell population. Combined stimulation with BMP4 and all-trans Retinoic Acid (RA) inhibited self-renewal and resulted in 90% of cells expressing Desmin and Nestin. Quantitative reverse transcription-polymerase chain reaction (qPCR) analysis confirmed that the cells were of mesodermal origin and expressed markers of mesenchymal and smooth muscle cells. BMP4 activation of a MAD-homolog (Smad)-dependent reporter in undifferentiated ES cells was attenuated by co-stimulation with RA and co-culture with PA6 cells. The Notch ligand Jag1 was expressed in PA6 cells and inhibition of Notch signalling blocked the differentiation inducing activity of PA6 cells. Our data suggest that mesodermal differentiation is regulated by the level of Smad activity as a result of inputs from BMP4, RA and the Notch pathway
Stat3 and c-Myc Genome-Wide Promoter Occupancy in Embryonic Stem Cells
Embryonic stem (ES) cell pluripotency is regulated in part by transcription factor (TF) pathways that maintain self-renewal and inhibit differentiation. Stat3 and c-Myc TFs are essential for maintaining mouse ES cell self-renewal. c-Myc, together with Oct4, Sox2, and Klf4, is a reprogramming factor. While previous studies have investigated core transcriptional circuitry in ES cells, other TF pathways that promote ES cell pluripotency have yet to be investigated. Therefore, to further understand ES cell transcriptional networks, we used genome-wide chromatin immunoprecipitation and microarray analysis (ChIP-chip) to map Stat3 and c-Myc binding targets in ES cells. Our results show that Stat3 and c-Myc occupy a significant number of genes whose expression is highly enriched in ES cells. By comparing Stat3 and c-Myc target genes with gene expression data from undifferentiated ES cells and embryoid bodies (EBs), we found that Stat3 binds active and inactive genes in ES cells, while c-Myc binds predominantly active genes. Moreover, the transcriptional states of Stat3 and c-Myc targets are correlated with co-occupancy of pluripotency-related TFs, polycomb group proteins, and active and repressive histone modifications. We also provide evidence that Stat3 targets are differentially expressed in ES cells following removal of LIF, where culture of ES cells in the absence of LIF resulted in downregulation of Stat3 target genes enriched in ES cells, and upregulation of lineage specific Stat3 target genes. Altogether, we reveal transcriptional targets of two key pluripotency-related genes in ES cells – Stat3 and c-Myc, thus providing further insight into the ES cell transcriptional network
Pleiotropy of Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Self-Renewal of Embryonic Stem Cells from Refractory Mouse Strains
Background: Inhibition of glycogen synthase kinase-3 (GSK-3) improves the efficiency of embryonic stem (ES) cell derivation from various strains of mice and rats, as well as dramatically promotes ES cell self-renewal potential. b-catenin has been reported to be involved in the maintenance of self-renewal of ES cells through TCF dependent and independent pathway. But the intrinsic difference between ES cell lines from different species and strains has not been characterized. Here, we dissect the mechanism of GSK-3 inhibition by CHIR99021 in mouse ES cells from refractory mouse strains. Methodology/Principal Findings: We found that CHIR99021, a GSK-3 specific inhibitor, promotes self-renewal of ES cells from recalcitrant C57BL/6 (B6) and BALB/c mouse strains through stabilization of b-catenin and c-Myc protein levels. Stabilized b-catenin promoted ES self-renewal through two mechanisms. First, b-catenin translocated into the nucleus to maintain stem cell pluripotency in a lymphoid-enhancing factor/T-cell factor–independent manner. Second, b-catenin binds plasma membrane-localized E-cadherin, which ensures a compact, spherical morphology, a hallmark of ES cells. Further, elevated c-Myc protein levels did not contribute significantly to CH-mediated ES cell self-renewal. Instead, the role of c-Myc is dependent on its transformation activity and can be replaced by N-Myc but not L-Myc. b-catenin and c-Myc have similar effects on ES cells derived from both B6 and BALB/c mice. Conclusions/Significance: Our data demonstrated that GSK-3 inhibition by CH promotes self-renewal of mouse ES cell
Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells
Embryonic stem cells (ESC) have the potential to self-renew indefinitely and
to differentiate into any of the three germ layers. The molecular mechanisms
for self-renewal, maintenance of pluripotency and lineage specification are
poorly understood, but recent results point to a key role for epigenetic
mechanisms. In this study, we focus on quantifying the impact of histone 3
acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We
analyze genome-wide histone acetylation patterns and gene expression profiles
measured over the first five days of cell differentiation triggered by
silencing Nanog, a key transcription factor in ESC regulation. We explore the
temporal and spatial dynamics of histone acetylation data and its correlation
with gene expression using supervised and unsupervised statistical models. On a
genome-wide scale, changes in acetylation are significantly correlated to
changes in mRNA expression and, surprisingly, this coherence increases over
time. We quantify the predictive power of histone acetylation for gene
expression changes in a balanced cross-validation procedure. In an in-depth
study we focus on genes central to the regulatory network of Mouse ESC,
including those identified in a recent genome-wide RNAi screen and in the
PluriNet, a computationally derived stem cell signature. We find that compared
to the rest of the genome, ESC-specific genes show significantly more
acetylation signal and a much stronger decrease in acetylation over time, which
is often not reflected in an concordant expression change. These results shed
light on the complexity of the relationship between histone acetylation and
gene expression and are a step forward to dissect the multilayer regulatory
mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog
Efficient Generation of Germ Line Transmitting Chimeras from C57BL/6N ES Cells by Aggregation with Outbred Host Embryos
Genetically modified mouse strains derived from embryonic stem (ES) cells have become essential tools for functional genomics and biomedical research. Large scale mutagenesis projects are producing libraries of mutant C57BL/6 (B6) ES cells to enable the functional annotation of every gene of the mouse genome. To realize the utility of these resources, efficient and accessible methods of generating mutant mice from these ES cells are necessary. Here, we describe a combination of ICR morula aggregation and a chemically-defined culture medium with widely available and accessible components for the high efficiency generation of germline transmitting chimeras from C57BL/6N ES cells. Together these methods will ease the access of the broader biomedical research community to the publicly available B6 ES cell resources
The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation
Polycomb group (PcG) proteins form transcriptional repressor complexes with well-established functions during cell-fate determination. Yet, the mechanisms underlying their regulation remain poorly understood. Here, we extend the role of Polycomb complexes in the temporal control of neural progenitor cell (NPC) commitment by demonstrating that the PcG protein Ezh2 is necessary to prevent the premature onset of gliogenesis. In addition, we identify the chromodomain helicase DNA-binding protein 4 (Chd4) as a critical interaction partner of Ezh2 required specifically for PcG-mediated suppression of the key astrogenic marker gene GFAP. Accordingly, in vivo depletion of Chd4 in the developing neocortex promotes astrogenesis. Collectively, these results demonstrate that PcG proteins operate in a highly dynamic, developmental stage-dependent fashion during neural differentiation and suggest that target gene-specific mechanisms regulate Polycomb function during sequential cell-fate decisions
In Vitro Differentiation of Mouse Embryonic Stem Cells into Neurons of the Dorsal Forebrain
Pluripotent embryonic stem cells (ESCs) are able to differentiate into all cell types in the organism including cortical neurons. To follow the dynamic generation of progenitors of the dorsal forebrain in vitro, we generated ESCs from D6-GFP mice in which GFP marks neocortical progenitors and neurons after embryonic day (E) 10.5. We used several cell culture protocols for differentiation of ESCs into progenitors and neurons of the dorsal forebrain. In cell culture, GFP-positive cells were induced under differentiation conditions in quickly formed embryoid bodies (qEBs) after 10–12 day incubation. Activation of Wnt signaling during ESC differentiation further stimulated generation of D6-GFP-positive cortical cells. In contrast, differentiation protocols using normal embryoid bodies (nEBs) yielded only a few D6-GFP-positive cells. Gene expression analysis revealed that multiple components of the canonical Wnt signaling pathway were expressed during the development of embryoid bodies. As shown by immunohistochemistry and quantitative qRT-PCR, D6-GFP-positive cells from qEBs expressed genes that are characteristic for the dorsal forebrain such as Pax6, Dach1, Tbr1, Tbr2, or Sox5. qEBs culture allowed the formation of a D6-GFP positive pseudo-polarized neuroepithelium with the characteristic presence of N-cadherin at the apical pole resembling the structure of the developing neocortex
- …