192 research outputs found

    Designer Multimode Localized Random Lasing in Amorphous Lattices at Terahertz Frequencies

    Get PDF
    Random lasers are a special class of laser in which light is confined through multiple scattering and interference process in a disordered medium, without a traditional optical cavity. They have been widely studied to investigate fundamental phenomena such as Anderson localization, and for applications such as speckle-free imaging, benefitting from multiple lasing modes. However, achieving controlled localized multi-mode random lasing at long wavelengths, such as in the terahertz (THz) frequency regime, remains a challenge. Here, we study devices consisting of randomly-distributed pillars fabricated from a quantum cascade gain medium, and show that such structures can achieve transversemagnetic polarized (TM) multi-mode random lasing, with strongly localized modes at THz frequencies. The weak short-range order induced by the pillar distribution is sufficient to ensure high quality-factor modes that have a large overlap with the active material. Furthermore, the emission spectrum can be easily tuned by tailoring the scatterer size and filling fraction. These ā€œdesignerā€ random lasers, realized using standard photolithography 2 techniques, provide a promising platform for investigating disordered photonics with predesigned randomness in the THz frequency range, and may have potential applications such as speckle-free imaging

    Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork

    Get PDF
    Lithium salt has been widely used in treatment of Bipolar Disorder, a mental disturbance associated with circadian rhythm disruptions. Lithium mildly but consistently lengthens circadian period of behavioural rhythms in multiple organisms. To systematically address the impacts of lithium on circadian pacemaking and the underlying mechanisms, we measured locomotor activity in mice in vivo following chronic lithium treatment, and also tracked clock protein dynamics (PER2::Luciferase) in vitro in lithium-treated tissue slices/cells. Lithium lengthens period of both the locomotor activity rhythms, as well as the molecular oscillations in the suprachiasmatic nucleus, lung tissues and fibroblast cells. In addition, we also identified significantly elevated PER2::LUC expression and oscillation amplitude in both central and peripheral pacemakers. Elevation of PER2::LUC by lithium was not associated with changes in protein stabilities of PER2, but instead with increased transcription of Per2 gene. Although lithium and GSK3 inhibition showed opposing effects on clock period, they acted in a similar fashion to up-regulate PER2 expression and oscillation amplitude. Collectively, our data have identified a novel amplitude-enhancing effect of lithium on the PER2 protein rhythms in the central and peripheral circadian clockwork, which may involve a GSK3-mediated signalling pathway. These findings may advance our understanding of the therapeutic actions of lithium in Bipolar Disorder or other psychiatric diseases that involve circadian rhythm disruptions

    Direct Regulation of CLOCK Expression by REV-ERB

    Get PDF
    Circadian rhythms are regulated at the cellular level by transcriptional feedback loops leading to oscillations in expression of key proteins including CLOCK, BMAL1, PERIOD (PER), and CRYPTOCHROME (CRY). The CLOCK and BMAL1 proteins are members of the bHLH class of transcription factors and form a heterodimer that regulates the expression of the PER and CRY genes. The nuclear receptor REV-ERBĪ± plays a key role in regulation of oscillations in BMAL1 expression by directly binding to the BMAL1 promoter and suppressing its expression at certain times of day when REV-ERBĪ± expression levels are elevated. We recently demonstrated that REV-ERBĪ± also regulates the expression of NPAS2, a heterodimer partner of BMAL1. Here, we show that REV-ERBĪ± also regulates the expression another heterodimer partner of BMAL1, CLOCK. We identified a REV-ERBĪ± binding site within the 1st intron of the CLOCK gene using a chromatin immunoprecipitation ā€“ microarray screen. Suppression of REV-ERBĪ± expression resulted in elevated CLOCK mRNA expression consistent with REV-ERBĪ±'s role as a transcriptional repressor. A REV-ERB response element (RevRE) was identified within this region of the CLOCK gene and was conserved between humans and mice. Additionally, the CLOCK RevRE conferred REV-ERB responsiveness to a heterologous reporter gene. Our data suggests that REV-ERBĪ± plays a dual role in regulation of the activity of the BMAL1/CLOCK heterodimer by regulation of expression of both the BMAL1 and CLOCK genes

    GPR50 Interacts with TIP60 to Modulate Glucocorticoid Receptor Signalling

    Get PDF
    GPR50 is an orphan G-protein coupled receptor most closely related to the melatonin receptors. The physiological function of GPR50 remains unclear, although our previous studies implicate the receptor in energy homeostasis. Here, we reveal a role for GPR50 as a signalling partner and modulator of the transcriptional co-activator TIP60. This interaction was identified in a yeast-two-hybrid screen, and confirmed by co-immunoprecipitation and co-localisation of TIP60 and GPR50 in HEK293 cells. Co-expression with TIP60 increased perinuclear localisation of full length GPR50, and resulted in nuclear translocation of the cytoplasmic tail of the receptor, suggesting a functional interaction of the two proteins. We further demonstrate that GPR50 can enhance TIP60-coactiavtion of glucocorticoid receptor (GR) signalling. In line with in vitro results, repression of pituitary Pomc expression, and induction of gluconeogenic genes in liver in response to the GR agonist, dexamethasone was attenuated in Gpr50āˆ’/āˆ’ mice. These results identify a novel role for GPR50 in glucocorticoid receptor signalling through interaction with TIP60

    Does the Precision of a Biological Clock Depend upon Its Period? Effects of the Duper and tau Mutations in Syrian Hamsters

    Get PDF
    Mutations which alter the feedback loops that generate circadian rhythms may provide insight into their insensitivity to perturbation robustness) and their consistency of period (precision). I examined relationships between endogenous period, activity and rest (Ļ„DD, Ī± and Ļ) in Syrian hamsters using two different mutations, duper and tau, both of which speed up the circadian clock. I generated 8 strains of hamsters that are homozygous or heterozygous for the tau, duper, and wild type alleles in all combinations. The endogenous period of activity onsets among these strains ranged from 17.94+0.04 to 24.13Ā±0.04 h. Contrary to predictions, the variability of period was unrelated to its absolute value: all strains showed similar variability of Ļ„DD when activity onsets and acrophase were used as phase markers. The Ļ„DD of activity offsets was more variable than onsets but also differed little between genotypes. Cycle variation and precision were not correlated with Ļ„DD within any strain, and only weakly correlated when all strains are considered together. Only in animals homozygous for both mutations (super duper hamsters) were cycle variation and precision reduced. Rhythm amplitude differed between strains and was positively correlated with Ļ„DD and precision. All genotypes showed negative correlations between Ī± and Ļ. This confirms the expectation that deviations in the duration of subjective day and night should offset one another in order to conserve circadian period, even though homeostatic maintenance of energy reserves predicts that longer intervals of activity or rest would be followed by longer durations of rest or activity. Females consistently showed greater variability of the period of activity onset and acrophase, and of Ī±, but variability of the period of offset differed between sexes only in super duper hamsters. Despite the differences between genotypes in Ļ„DD, Ļ was consistently more strongly correlated with the preceding than the succeeding Ī±

    Waveforms of molecular oscillations reveal circadian timekeeping mechanisms

    Get PDF
    Circadian clocks play a pivotal role in orchestrating numerous physiological and developmental events. Waveform shapes of the oscillations of protein abundances can be informative about the underlying biochemical processes of circadian clocks. We derive a mathematical framework where waveforms do reveal hidden biochemical mechanisms of circadian timekeeping. We find that the cost of synthesizing proteins with particular waveforms can be substantially reduced by rhythmic protein half-lives over time, as supported by previous plant and mammalian data, as well as our own seedling experiment. We also find that previously-enigmatic, cyclic expression of positive arm components within the mammalian and insect clocks allows both a broad range of peak time differences between protein waveforms and the symmetries of the waveforms about the peak times. Such various peak-time differences may facilitate tissue-specific or developmental stage-specific multicellular processes. Our waveform-guided approach can be extended to various biological oscillators, including cell-cycle and synthetic genetic oscillators.Comment: Supplementary material is available at the journal websit

    Antibodies for Assessing Circadian Clock Proteins in the Rodent Suprachiasmatic Nucleus

    Get PDF
    Research on the mechanisms underlying circadian rhythmicity and the response of brain and body clocks to environmental and physiological challenges requires assessing levels of circadian clock proteins. Too often, however, it is difficult to acquire antibodies that specifically and reliably label these proteins. Many of these antibodies also lack appropriate validation. The goal of this project was to generate and characterize antibodies against several circadian clock proteins. We examined mice and hamsters at peak and trough times of clock protein expression in the suprachiasmatic nucleus (SCN). In addition, we confirmed specificity by testing the antibodies on mice with targeted disruption of the relevant genes. Our results identify antibodies against PER1, PER2, BMAL1 and CLOCK that are useful for assessing circadian clock proteins in the SCN by immunocytochemistry

    Interfering RNA and HIV: Reciprocal Interferences

    Get PDF
    In this review, a quick presentation of what interfering RNA (iRNA) areā€”small RNA able to exert an inhibition on gene expression at a posttranscriptional level, based on sequence homology between the iRNA and the mRNAā€”will be given. The many faces of the interrelations between iRNA and viruses, particularly HIV, will be reviewed. Four kinds of interactions have been described: i) iRNA of viral origin blocking viral RNA, ii) iRNA of viral origin downregulating cellular mRNA, iii) iRNA of cellular origin (microRNA) targeting viral RNA, and iv) microRNA downregulating cellular mRNA encoding cell proteins used by the virus for its replication. Next, HIV strategies to manipulate these interrelations will be considered: suppression of iRNA biosynthesis by Tat, trapping by the HIV TAR sequence of a cell component, TRBP, necessary for iRNA production and action, and induction by the virus of some microRNA together with suppression of others. Then, we will discuss the putative effects of these mutual influences on viral replication as well as on viral latency, immune response, and viral cytopathogenicity. Finally, the potential consequences on the human infection of genetic polymorphisms in microRNA genes and the therapeutic potential of iRNA will be presented

    MicroRNA expression in tumor cells from Waldenstrom's macroglobulinemia reflects both their normal and malignant cell counterparts

    Get PDF
    MicroRNAs (miRNAs) are involved in the regulation of many cellular processes including hematopoiesis, with the aberrant expression of differentiation-stage specific miRNA associated with lymphomagenesis. miRNA profiling has been essential for understanding the underlying biology of many hematological malignancies; however the miRNA signature of the diverse tumor clone associated with Waldenstrom's macroglobulinemia (WM), consisting of B lymphocytes, plasmacytes and lymphoplasmacytic cells, has not been characterized. We have investigated the expression of over 13ā€‰000 known and candidate miRNAs in both CD19+ and CD138+ WM tumor cells, as well as in their malignant and non-malignant counterparts. Although neither CD19+ nor CD138+ WM cells were defined by a distinct miRNA profile, the combination of all WM cells revealed a unique miRNA transcriptome characterized by the dysregulation of many miRNAs previously identified as crucial for normal B-cell lineage differentiation. Specifically, miRNA-9*/152/182 were underexpressed in WM, whereas the expression of miRNA-21/125b/181a/193b/223/363 were notably increased (analysis of variance; P<0.0001). Future studies focusing on the effects of these dysregulated miRNAs will provide further insight into the mechanisms responsible for the pathogenesis of WM

    Role of Sphingomyelin Synthase in Controlling the Antimicrobial Activity of Neutrophils against Cryptococcus neoformans

    Get PDF
    The key host cellular pathway(s) necessary to control the infection caused by inhalation of the environmental fungal pathogen Cryptococcus neoformans are still largely unknown. Here we have identified that the sphingolipid pathway in neutrophils is required for them to exert their killing activity on the fungus. In particular, using both pharmacological and genetic approaches, we show that inhibition of sphingomyelin synthase (SMS) activity profoundly impairs the killing ability of neutrophils by preventing the extracellular release of an antifungal factor(s). We next found that inhibition of protein kinase D (PKD), which controls vesicular sorting and secretion and is regulated by diacylglycerol (DAG) produced by SMS, totally blocks the extracellular killing activity of neutrophils against C. neoformans. The expression of SMS genes, SMS activity and the levels of the lipids regulated by SMS (namely sphingomyelin (SM) and DAG) are up-regulated during neutrophil differentiation. Finally, tissue imaging of lungs infected with C. neoformans using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS), revealed that specific SM species are associated with neutrophil infiltration at the site of the infection. This study establishes a key role for SMS in the regulation of the killing activity of neutrophils against C. neoformans through a DAG-PKD dependent mechanism, and provides, for the first time, new insights into the protective role of host sphingolipids against a fungal infection
    • ā€¦
    corecore