680 research outputs found

    Interaction of the oncoprotein transcription factor MYC with its chromatin cofactor WDR5 is essential for tumor maintenance.

    Get PDF
    The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor for which structural information is available is WDR5, which interacts with MYC to facilitate its recruitment to chromatin. To explore whether disruption of the MYC-WDR5 interaction could potentially become a viable anticancer strategy, we developed a Burkitt\u27s lymphoma system that allows replacement of wild-type MYC for mutants that are defective for WDR5 binding or all known nuclear MYC functions. Using this system, we show that WDR5 recruits MYC to chromatin to control the expression of genes linked to biomass accumulation. We further show that disrupting the MYC-WDR5 interaction within the context of an existing cancer promotes rapid and comprehensive tumor regression in vivo. These observations connect WDR5 to a core tumorigenic function of MYC and establish that, if a therapeutic window can be established, MYC-WDR5 inhibitors could be developed as anticancer agents

    Fluorescence-Based Flow Sorting in Parallel with Transposon Insertion Site Sequencing Identifies Multidrug Efflux Systems in Acinetobacter baumannii

    Get PDF
    Multidrug efflux pumps provide clinically significant levels of drug resistance in a number of Gram-negative hospital-acquired pathogens. These pathogens frequently carry dozens of genes encoding putative multidrug efflux pumps. However, it can be difficult to determine how many of these pumps actually mediate antimicrobial efflux, and it can be even more challenging to identify the regulatory proteins that control expression of these pumps. In this study, we developed an innovative high-throughput screening method, combining transposon insertion sequencing and cell sorting methods (TraDISort), to identify the genes encoding major multidrug efflux pumps, regulators, and other factors that may affect the permeation of antimicrobials, using the nosocomial pathogen Acinetobacter baumannii. A dense library of more than 100,000 unique transposon insertion mutants was treated with ethidium bromide, a common substrate of multidrug efflux pumps that is differentially fluorescent inside and outside the bacterial cytoplasm. Populations of cells displaying aberrant accumulations of ethidium were physically enriched using fluorescence-activated cell sorting, and the genomic locations of transposon insertions within these strains were determined using transposon-directed insertion sequencing. The relative abundance of mutants in the input pool compared to the selected mutant pools indicated that the AdeABC, AdeIJK, and AmvA efflux pumps are the major ethidium efflux systems in A. baumannii. Furthermore, the method identified a new transcriptional regulator that controls expression of amvA. In addition to the identification of efflux pumps and their regulators, TraDISort identified genes that are likely to control cell division, cell morphology, or aggregation in A. baumannii. IMPORTANCE Transposon-directed insertion sequencing (TraDIS) and related technologies have emerged as powerful methods to identify genes required for bacterial survival or competitive fitness under various selective conditions. We applied fluorescence-activated cell sorting (FACS) to physically enrich for phenotypes of interest within a mutant population prior to TraDIS. To our knowledge, this is the first time that a physical selection method has been applied in parallel with TraDIS rather than a fitness-induced selection. The results demonstrate the feasibility of this combined approach to generate significant results and highlight the major multidrug efflux pumps encoded in an important pathogen. This FACS-based approach, TraDISort, could have a range of future applications, including the characterization of efflux pump inhibitors, the identification of regulatory factors controlling gene or protein expression using fluorescent reporters, and the identification of genes involved in cell replication, morphology, and aggregation

    Reduced expression of C/EBPβ-LIP extends health- and lifespan in mice

    Get PDF
    Ageing is associated with physical decline and the development of age-related diseases such as metabolic disorders and cancer. Few conditions are known that attenuate the adverse effects of ageing, including calorie restriction (CR) and reduced signalling through the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Synthesis of the metabolic transcription factor C/EBPβ-LIP is stimulated by mTORC1, which critically depends on a short upstream open reading frame (uORF) in the Cebpb-mRNA. Here we describe that reduced C/EBPβ-LIP expression due to genetic ablation of the uORF delays the development of age-associated phenotypes in mice. Moreover, female C/EBPβΔuORF mice display an extended lifespan. Since LIP levels increase upon aging in wild type mice, our data reveal an important role for C/EBPβ in the aging process and suggest that restriction of LIP expression sustains health and fitness. Thus, therapeutic strategies targeting C/EBPβ-LIP may offer new possibilities to treat age-related diseases and to prolong healthspan

    Orbital forcing of tropical climate dynamics in the Early Cambrian

    Full text link
    peer reviewedAccording to modern atmospheric circulation models, the Intertropical Convergence Zone (ITCZ), as the Earth's meteorological equator, plays an essential role in the low-latitude hydrologic cycles. The limited availability of high-resolution tropical climate archives, especially from the Early Paleozoic Era, severely limits our understanding of ITCZ migration dynamics in deep time. Here we present high-resolution climate-proxy records (i.e., magnetic susceptibility (MS) and Zirconium/Aluminum (Zr/Al)) from tropical marine sediments of the ∼526-million-year-old Qiongzhusi Formation in South China to investigate the link between orbitally forced insolation changes, ITCZ migration dynamics, and low-latitude climate processes. These orbital-scale variations in MS and Zr/Al series are interpreted as alternations between wet and dry cycles, controlled by monsoon intensity under the orbitally forced ITCZ-related paleo-Hadley Cell dynamics. Our results show that combined precession and obliquity orbital cycles had an impact on the Early Cambrian ITCZ migration. Specifically, the precession and obliquity forcing shift the mean position of the ITCZ latitudinally by changing the interhemispheric pressure contrasts, thus affecting the low latitude hydroclimate cycle. We report semi-precession cycles of 8.3–7.9 kyr, which were probably associated with the twice-annual passage of the ITCZ across the intertropical zone, consistent with the paleogeographical location of South China near the equator during the Early Cambrian. Observed ∼1.1 – ∼1.5 Myr eccentricity amplitude modulation (AM) cycles and ∼ 1.0 – ∼1.2 Myr obliquity AM cycles may provide geological evidence for the chaotic motion between Earth and Mars in the Early Cambrian

    Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis

    Get PDF
    International audienceGlioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for developing effective therapies for glioblastoma. In this study, we identify the regulatory cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3 (TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour development and prolongs survival. Moreover, we identify TET3 as a potent tumour suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma

    Oncogenic Deregulation of EZH2 as an Opportunity for Targeted Therapy in Lung Cancer

    Get PDF
    As a master regulator of chromatin function, the lysine methyltransferase EZH2 orchestrates transcriptional silencing of developmental gene networks. Overexpression of EZH2 is commonly observed in human epithelial cancers, such as non-small cell lung carcinoma (NSCLC), yet definitive demonstration of malignant transformation by deregulated EZH2 remains elusive. Here, we demonstrate the causal role of EZH2 overexpression in NSCLC with new genetically-engineered mouse models of lung adenocarcinoma. Deregulated EZH2 silences normal developmental pathways leading to epigenetic transformation independent from canonical growth factor pathway activation. As such, tumors feature a transcriptional program distinct from KRAS- and EGFR-mutant mouse lung cancers, but shared with human lung adenocarcinomas exhibiting high EZH2 expression. To target EZH2-dependent cancers, we developed a novel and potent EZH2 inhibitor JQEZ5 that promoted the regression of EZH2-driven tumors in vivo, confirming oncogenic addiction to EZH2 in established tumors and providing the rationale for epigenetic therapy in a subset of lung cancer

    MYC regulates ribosome biogenesis and mitochondrial gene expression programs through its interaction with host cell factor-1.

    Get PDF
    The oncoprotein transcription factor MYC is a major driver of malignancy and a highly validated but challenging target for the development of anticancer therapies. Novel strategies to inhibit MYC may come from understanding the co-factors it uses to drive pro-tumorigenic gene expression programs, providing their role in MYC activity is understood. Here we interrogate how one MYC co-factor, host cell factor (HCF)-1, contributes to MYC activity in a human Burkitt lymphoma setting. We identify genes connected to mitochondrial function and ribosome biogenesis as direct MYC/HCF-1 targets and demonstrate how modulation of the MYC-HCF-1 interaction influences cell growth, metabolite profiles, global gene expression patterns, and tumor growth in vivo. This work defines HCF-1 as a critical MYC co-factor, places the MYC-HCF-1 interaction in biological context, and highlights HCF-1 as a focal point for development of novel anti-MYC therapies

    Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations of the <it>MEN1 </it>gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome. Our group and others have shown that <it>Men1 </it>disruption in mice recapitulates MEN1 pathology. Intriguingly, rare lesions in hormone-dependent tissues, such as prostate and mammary glands, were also observed in the <it>Men1 </it>mutant mice.</p> <p>Methods</p> <p>To study the occurrence of prostate lesions, we followed a male mouse cohort of 47 <it>Men1</it><sup>+/- </sup>mice and 23 age-matched control littermates, starting at 18 months of age, and analysed the prostate glands from the cohort.</p> <p>Results</p> <p>Six <it>Men1</it><sup>+/- </sup>mice (12.8%) developed prostate cancer, including two adenocarcinomas and four <it>in situ </it>carcinomas, while none of the control mice developed cancerous lesions. The expression of menin encoded by the <it>Men1 </it>gene was found to be drastically reduced in all carcinomas, and partial LOH of the wild-type <it>Men1 </it>allele was detected in three of the five analysed lesions. Using immunostaining for the androgen receptor and p63, a basal epithelial cell marker, we demonstrated that the menin-negative prostate cancer cells did not display p63 expression and that the androgen receptor was expressed but more heterogeneous in these lesions. Furthermore, our data showed that the expression of the cyclin-dependent kinase inhibitor CDKN1B (p27), a <it>Men1 </it>target gene known to be inactivated during prostate cell tumorigenesis, was notably decreased in the prostate cancers that developed in the mutant mice.</p> <p>Conclusion</p> <p>Our work suggests the possible involvement of <it>Men1 </it>inactivation in the tumorigenesis of the prostate gland.</p
    corecore