207 research outputs found
Sensitivity analysis and reduction of a dynamic model of a bioproduction of fructo-oligosaccharides
Starting from a relatively detailed model of a bioprocess producing fructo-oligosaccharides, a set of experimental data collected in batch and fed-batch experiments is exploited to estimate the unknown model parameters. The original model includes the growth of the fungus Aureobasidium pullulans which produces the enzymes responsible for the hydrolysis and transfructosylation reactions, and as such contains 25 kinetic parameters and 16 pseudo-stoichiometric coefficients, which are not uniquely identifiable with the data at hand. The aim of this study is, therefore, to show how sensitivity analysis and quantitative indicators based on the Fisher information matrix can be used to reduce the detailed model to a practically identifiable model. Parametric sensitivity analysis can indeed be used to progressively simplify the model to a representation involving 15 kinetic parameters and 8 pseudo-stoichiometric coefficients. The reduced model provides satisfactory prediction and can be convincingly cross validated.The authors thank the financial support from the F.R.S.-FNRS, the Belgium National Fund for the Scientific Research (Research Project 24643.08). C. Nobre thanks the Fundação para a Ciência e Tecnologia for the strategic funding of UID/BIO/04469 /2013 unit.info:eu-repo/semantics/publishedVersio
RMDAP: A Versatile, Ready-To-Use Toolbox for Multigene Genetic Transformation
Background: The use of transgenes to improve complex traits in crops has challenged current genetic transformation technology for multigene transfer. Therefore, a multigene transformation strategy for use in plant molecular biology and plant genetic breeding is thus needed. Methodology/Principal Findings: Here we describe a versatile, ready-to-use multigene genetic transformation method, named the Recombination-assisted Multifunctional DNA Assembly Platform (RMDAP), which combines many of the useful features of existing plant transformation systems. This platform incorporates three widely-used recombination systems, namely, Gateway technology, in vivo Cre/loxP and recombineering into a highly efficient and reliable approach for gene assembly. RMDAP proposes a strategy for gene stacking and contains a wide range of flexible, modular vectors offering a series of functionally validated genetic elements to manipulate transgene overexpression or gene silencing involved in a metabolic pathway. In particular, the ability to construct a multigene marker-free vector is another attractive feature. The built-in flexibility of original vectors has greatly increased the expansibility and applicability of the system. A proof-ofprinciple experiment was confirmed by successfully transferring several heterologous genes into the plant genome. Conclusions/Significance: This platform is a ready-to-use toolbox for full exploitation of the potential for coordinate regulation of metabolic pathways and molecular breeding, and will eventually achieve the aim of what we call ‘‘one-sto
Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape
The onset of ripening involves changes in sugar metabolism, softening, and color development. Most understanding of this process arises from work in climacteric fruits where the control of ripening is predominately by ethylene. However, many fruits such as grape are nonclimacteric, where the onset of ripening results from the integration of multiple hormone signals including sugars and abscisic acid (ABA). In this study, we identified ten orthologous gene families in Vitis vinifera containing components of sugar and ABA-signaling pathways elucidated in model systems, including PP2C protein phosphatases, and WRKY and homeobox transcription factors. Gene expression was characterized in control- and deficit-irrigated, field-grown Cabernet Sauvignon. Sixty-seven orthologous genes were identified, and 38 of these were expressed in berries. Of the genes expressed in berries, 68% were differentially expressed across development and/or in response to water deficit. Orthologs of several families were induced at the onset of ripening, and induced earlier and to higher levels in response to water deficit; patterns of expression that correlate with sugar and ABA accumulation during ripening. Similar to field-grown berries, ripening phenomena were induced in immature berries when cultured with sucrose and ABA, as evidenced by changes in color, softening, and gene expression. Finally, exogenous sucrose and ABA regulated key orthologs in culture, similar to their regulation in the field. This study identifies novel candidates in the control of nonclimacteric fruit ripening and demonstrates that grape orthologs of key sugar and ABA-signaling components are regulated by sugar and ABA in fleshy fruit
- …