309 research outputs found
Multicolor Combinatorial Probe Coding for Real-Time PCR
The target volume of multiplex real-time PCR assays is limited by the number of fluorescent dyes available and the number of fluorescence acquisition channels present in the PCR instrument. We hereby explored a probe labeling strategy that significantly increased the target volume of real-time PCR detection in one reaction. The labeling paradigm, termed “Multicolor Combinatorial Probe Coding” (MCPC), uses a limited number (n) of differently colored fluorophores in various combinations to label each probe, enabling one of 2n-1 genetic targets to be detected in one reaction. The proof-of-principle of MCPC was validated by identification of one of each possible 15 human papillomavirus types, which is the maximum target number theoretically detectable by MCPC with a 4-color channel instrument, in one reaction. MCPC was then improved from a one-primer-pair setting to a multiple-primer-pair format through Homo-Tag Assisted Non-Dimer (HAND) system to allow multiple primer pairs to be included in one reaction. This improvement was demonstrated via identification of one of the possible 10 foodborne pathogen candidates with 10 pairs of primers included in one reaction, which had limit of detection equivalent to the uniplex PCR. MCPC was further explored in detecting combined genotypes of five β-globin gene mutations where multiple targets were co-amplified. MCPC strategy could expand the scope of real-time PCR assays in applications which are unachievable by current labeling strategy
Reanalysis and Simulation Suggest a Phylogenetic Microarray Does Not Accurately Profile Microbial Communities
The second generation (G2) PhyloChip is designed to detect over 8700 bacteria and archaeal and has been used over 50 publications and conference presentations. Many of those publications reveal that the PhyloChip measures of species richness greatly exceed statistical estimates of richness based on other methods. An examination of probes downloaded from Greengenes suggested that the system may have the potential to distort the observed community structure. This may be due to the sharing of probes by taxa; more than 21% of the taxa in that downloaded data have no unique probes. In-silico simulations using these data showed that a population of 64 taxa representing a typical anaerobic subterranean community returned 96 different taxa, including 15 families incorrectly called present and 19 families incorrectly called absent. A study of nasal and oropharyngeal microbial communities by Lemon et al (2010) found some 1325 taxa using the G2 PhyloChip, however, about 950 of these taxa have, in the downloaded data, no unique probes and cannot be definitively called present. Finally, data from Brodie et al (2007), when re-examined, indicate that the abundance of the majority of detected taxa, are highly correlated with one another, suggesting that many probe sets do not act independently. Based on our analyses of downloaded data, we conclude that outputs from the G2 PhyloChip should be treated with some caution, and that the presence of taxa represented solely by non-unique probes be independently verified
Effects of NFKB1 and NFKBIA Gene Polymorphisms on Susceptibility to Environmental Factors and the Clinicopathologic Development of Oral Cancer
encoding IkappaBalpha (IκBα) with both the susceptibility to develop OSCC and the clinicopathological characteristics of the tumors.<.05), compared with those patients CC homozygotes. 519 might be a predictive factor for the distal metastasis of OSCC in Taiwanese
Ordered Mesostructured CdS Nanowire Arrays with Rectifying Properties
Highly ordered mesoporous CdS nanowire arrays were synthesized by using mesoporous silica as hard template and cadmium xanthate (CdR2) as a single precursor. Upon etching silica, mesoporous CdS nanowire arrays were produced with a yield as high as 93 wt%. The nanowire arrays were characterized by XRD, N2adsorption, TEM, and SEM. The results show that the CdS products replicated from the mesoporous silica SBA-15 hard template possess highly ordered hexagonal mesostructure and fiber-like morphology, analogous to the mother template. The current–voltage characteristics of CdS nanoarrays are strongly nonlinear and asymmetrical, showing rectifying diode-like behavior
Recommended from our members
Improved activity and stability of chlorobenzene oxidation over transition metal-substituted spinel-type catalysts supported on cordierite
Industrial catalysts usually encounter great challenges in Cl· deactivation, toxic by-products generation, and stability with a long running operation for catalytic oxidation of chlorinated volatile organic compounds (CVOCs). In this research, spinel-type oxides with transition metal substituted as active oxides supported on cordierite (Crd) was identified to catalytic degradation of chlorobenzene (CB). The Cu1.4Mn1.6O4 spinel-type oxides considered as the main active oxides have been identified, which were confirmed by XRD and TEM. The activities of these CuMxMn2-xO4 catalysts were markedly improved by lower calcining temperature and shorter time. CuCe0.25Mn1.75O4/Crd catalyst displayed the highest activity and good stability due to that CeO2 nano-rods structure conducive to increase the Oads amount, the dispersion of active oxides, the strength of weak acidity, the surface areas and pore volume. Moreover, spinel-type with CeO2 doping exhibited high performance in CVOCs elimination attributed to the high storage capacity of oxygen, plentiful oxygen vacancies, good efficiency in breaking C-Cl bond and the easy shuttles between Ce3+ and Ce4+, which were demonstrated by XPS. The results indicate that CeO2, Oads, and ·OH have beneficial effects on the removing Cl· into benzene, and then improving the ring-opening of CB for CB degradation
Characterization of Bioactive Recombinant Human Lysozyme Expressed in Milk of Cloned Transgenic Cattle
BACKGROUND: There is great potential for using transgenic technology to improve the quality of cow milk and to produce biopharmaceuticals within the mammary gland. Lysozyme, a bactericidal protein that protects human infants from microbial infections, is highly expressed in human milk but is found in only trace amounts in cow milk. METHODOLOGY/PRINCIPAL FINDINGS: We have produced 17 healthy cloned cattle expressing recombinant human lysozyme using somatic cell nuclear transfer. In this study, we just focus on four transgenic cattle which were natural lactation. The expression level of the recombinant lysozyme was up to 25.96 mg/L, as measured by radioimmunoassay. Purified recombinant human lysozyme showed the same physicochemical properties, such as molecular mass and bacterial lysis, as its natural counterpart. Moreover, both recombinant and natural lysozyme had similar conditions for reactivity as well as for pH and temperature stability during in vitro simulations. The gross composition of transgenic and non-transgenic milk, including levels of lactose, total protein, total fat, and total solids were not found significant differences. CONCLUSIONS/SIGNIFICANCE: Thus, our study not only describes transgenic cattle whose milk offers the similar nutritional benefits as human milk but also reports techniques that could be further refined for production of active human lysozyme on a large scale
A Dominant Negative ERβ Splice Variant Determines the Effectiveness of Early or Late Estrogen Therapy after Ovariectomy in Rats
The molecular mechanisms for the discrepancy in outcome of initiating estrogen therapy (ET) around peri-menopause or several years after menopause in women are unknown. We hypothesize that the level of expression of a dominant negative estrogen receptor (ER) β variant, ERβ2, may be a key factor determining the effectiveness of ET in post-menopausal women. We tested this hypothesis in ovariectomized nine month-old (an age when irregular estrous cycles occur) female Sprague Dawley rats. Estradiol treatment was initiated either 6 days (Early ET, analogous to 4 months post-menopause in humans), or 180 days (Late ET, analogous to 11 years post-menopause in humans) after ovariectomy. Although ERβ2 expression increased in all OVX rats, neurogenic and neuroprotective responses to estradiol differed in Early and Late ET. Early ET reduced ERβ2 expression in both hippocampus and white blood cells, increased the hippocampal cell proliferation as assessed by Ki-67 expression, and improved mobility in the forced swim test. Late ET resulted in either no or modest effects on these parameters. There was a close correlation between the degree of ERβ2 expression and the preservation of neural effects by ET after OVX in rats, supporting the hypothesis that persistent elevated levels of ERβ2 are a molecular basis for the diminished effectiveness of ET in late post-menopausal women. The correlation between the expression of ERβ2 in circulating white blood cells and brain cells suggests that ERβ2 expression in peripheral blood cells may be an easily accessible marker to predict the effective window for ET in the brain
- …