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Abstract We propose an alternative model for the holo-
graphic dark energy in a non-flat universe. This new model
differs from the previous one in that the IR length cutoff L is
taken to be exactly the event horizon size in a non-flat uni-
verse, which is more natural and theoretically/conceptually
concordant with the model of holographic dark energy in
a flat universe. We constrain the model using the recent
observational data including the type Ia supernova data from
SNLS3, the baryon acoustic oscillation data from 6dF, SDSS-
DR7, BOSS-DR11, and WiggleZ, the cosmic microwave
background data from Planck, and the Hubble constant mea-
surement from HST. In particular, since some previous stud-
ies have shown that the color–luminosity parameter β of
supernovae is likely to vary during the cosmic evolution,
we also consider such a case that β in SNLS3 is time-
varying in our data fitting. Compared to the constant β case,
the time-varying β case reduces the value of χ2 by about
35 and results in that β deviates from a constant at about
5σ level, well consistent with the previous studies. For the
parameter c of the holographic dark energy, the constant β

fit gives c = 0.65 ± 0.05 and the time-varying β fit yields
c = 0.72 ± 0.06. In addition, an open universe is favored (at
about 2σ ) for the model by the current data.

1 Introduction

Current cosmological observations indicate that the expan-
sion of our universe is accelerating due to a mysterious com-
ponent, called “dark energy” [1–8], which is gravitationally
repulsive and dominating the evolution of current universe.
To understand the nature of dark energy and explain the
observational data, numerous theoretical/phenomenological
models of dark energy have been put forward during the
past 15 years [9–31]. Though the nature of dark energy still

a e-mail: zhangxin@mail.neu.edu.cn

remains enigmatic, some dark energy models do explain the
observational data quite well. Besides the famous cosmo-
logical constant model or the � cold dark matter (�CDM)
model, which is theoretically challenged, the holographic
dark energy model [32] has been attracting lots of atten-
tion because it is theoretically plausible and observationally
viable.

In this paper, we focus on the holographic dark energy
model based on the holographic principle and an effective
quantum field theory. According to the energy bound pro-
posed by Cohen et al. [33], i.e., the total energy of a system
with size L would not exceed the mass of a black hole with
the same size, the vacuum energy density, which is dynam-
ically evolving in such a setting and viewed as the origin of
dark energy, called “holographic dark energy”, is conjectured
to be of the form [32]

ρde = 3c2 M2
Pl L

−2, (1)

where c is a dimensionless parameter, which plays an impor-
tant role in determining the properties of the holographic dark
energy, MPl is the reduced Plank mass, and L is the IR cutoff
length scale of the effective quantum field theory. Initially,
Hsu [34] pointed out that, if L is chosen to be the Hubble
scale of the universe, the equation of state of dark energy is
not correct for describing the accelerating expansion of the
universe. Then Li [32] suggested that the IR cutoff L be cho-
sen to be the size of the future event horizon, Rh, defined as

Rh(t) = armax(t) = a(t)
∫ ∞

t

dt ′

a(t ′)
. (2)

This yields a successful model for holographic dark energy,
and many theoretical and phenomenological studies followed
[35–54]. But this choice is only for a flat universe.

The next step is to extend the model to a non-flat universe.
Huang and Li [55] considered such an extension, but they did
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not choose the exact event horizon Rh as the IR cutoff L in
this case, but took L as

L = armax(t), (3)

where

rmax(t) = 1√
k

sinn

(√
k

∫ ∞

t

dt ′

a(t ′)

)
, (4)

with sinn(x) = sin(x), x , and sinh(x) for k > 0, k = 0,
and k < 0, respectively. Such a non-flat-universe model of
holographic dark energy was adopted by the community and
led to a number of following-up investigations [56–59].

In this paper, we propose an alternative model for the holo-
graphic dark energy in a non-flat universe. Differing from the
previous model [55], we persist in choosing the exact event
horizon, Rh, in a non-flat universe as the IR cutoff L for the
holographic dark energy. Shown by Weinberg [60], the event
horizon in a non-flat universe is defined as

Rh(t) = a(t)
∫ rmax

0

dr√
1 − kr2

= a(t)
∫ ∞

t

dt ′

a(t ′)
. (5)

We argue that this choice is more natural and more theoreti-
cally/conceptually concordant with the flat-universe model.
We will derive the evolution equations for the holographic
dark energy in this model setting and test the model with
the recent observational data including the type Ia super-
nova (SN) data from SNLS3, the baryon acoustic oscillation
(BAO) data from 6dF, SDSS-DR7, BOSS-DR11, and Wig-
gleZ, the cosmic microwave background (CMB) data from
Planck, and the Hubble constant measurement from HST.

We arrange the paper as follows. In Sect. 2, we describe
the model we propose and derive the evolution equations for
the holographic dark energy in a non-flat universe. In Sect. 3,
we describe the observational data we use in the fits. In par-
ticular, besides the usual application of the SNLS3 data, we
also consider the possibility that the color–luminosity param-
eter β is time-varying, which was indicated as an important
possibility in recent studies [61–72]. We report the fitting
results in Sect. 4 and discuss some related issues in Sect. 5.
Summary is given in the final section.

2 Alternative model of holographic dark energy
with spatial curvature

In a spatially non-flat Friedmann–Robertson–Walker uni-
verse, the Friedmann equation can be written as

3M2
Pl H

2 = ρk + ρm + ρde + ρr, (6)

where ρk = −3M2
Plk/a2 is the effective energy density

of the curvature component, and ρm, ρde, and ρr represent
the energy densities of matter (including dark matter and
baryons), dark energy, and radiation, respectively. Define the
fractional energy densities of the various components,

�k = ρk

ρc
, �m = ρm

ρc
, �de = ρde

ρc
, �r = ρr

ρc
, (7)

where ρc = 3M2
Pl H

2 is the critical density of the universe.
The energy conservation equation for the various compo-
nents in the universe takes the form

ρ̇i + 3H(1 + wi )ρi = 0, (8)

where w1 = −1/3 for spatial curvature, w2 = 0 for nonrela-
tivistic matter, w3 = pde/ρde for dark energy, and w4 = 1/3
for radiation. Note that, in this paper, an overdot always
denotes the derivative with respect to the cosmic time t . Com-
bining Eqs. (6) and (8), we have [73]

pde = −2

3

Ḣ

H2 ρc − ρc − 1

3
ρr + 1

3
ρk . (9)

Furthermore, this equation, together with the energy conser-
vation Eq. (8) for dark energy, gives

2(�de − 1)
Ḣ

H
+ �̇de + H(3�de − 3 + �k − �r) = 0.

(10)

In the holographic dark energy model, the most important
step is to choose appropriately the IR length cutoff for the
effective quantum field theory. Different assumptions for the
IR cutoff yield various different variants of holographic dark
energy [74–76]. In the original model of holographic dark
energy in a flat universe, L is taken to be the event horizon
size of the universe [32]. However, for a non-flat universe,
according to [55], L is not taken as the exact event horizon,
but the form of Eq. (3) [along with Eq. (4)] is adopted. In this
work, we adopt the point of view that the exact form of the
event horizon in a non-flat universe should be taken as the IR
cutoff for the holographic dark energy. Following Weinberg’s
famous monograph [60] (in which the event horizon in a non-
flat universe is clearly defined), we take the IR cutoff as

L = Rh(t) = a(t)
∫ rmax

0

dr√
1 − kr2

= a(t)
∫ ∞

t

dt ′

a(t ′)
.

(11)

From the definition of the holographic dark energy density
(1), we have

�de = c2

H2L2 . (12)
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Substituting Eq. (11) into Eq. (12), we get

∫ ∞

t

dt

a
= c

Ha
√

�de
. (13)

Taking the derivative on both sides of Eq. (13) with respect
to t , we get

�̇de

2�de
+ H + Ḣ

H
=

√
�de H

c
. (14)

Combining Eqs. (10) and (14), the two differential equations
describing the evolution of holographic dark energy in a non-
flat universe can be obtained,

1

E

dE

dz
= − �de

1 + z

(
�k − �r − 3

2�de
+ 1

2
+

√
�de

c

)
, (15)

d�de

dz
= −2�de(1 − �de)

1 + z

(√
�de

c
+ 1

2
− �k − �r

2(1 − �de)

)
,

(16)

where E(z) ≡ H(z)/H0 is the dimensionless Hubble expan-
sion rate, �k(z) = �k0(1 + z)2/E(z)2, and �r(z) =
�r0(1 + z)4/E(z)2. In addition, �r0 = �m0/(1 + zeq)

with zeq = 2.5 × 104�m0h2(Tcmb/2.7 K)−4. Here, h is the
reduced Hubble constant defined by H = 100 h km s−1

Mpc−1, and we take Tcmb = 2.7255 K. The initial condi-
tions are E(0) = 1 and �de(0) = 1 − �k0 − �m0 − �r0.

Furthermore, from the energy conservation equation and
the evolution equation of holographic dark energy with spa-
tial curvature, using Eqs. (12) and (14), we can also derive
the equation of state for the holographic dark energy in a
non-flat universe:

w = −1

3
− 2

3c

√
�de. (17)

Apparently, this expression of w is the same as the form in
a flat universe model [32]. However, one should notice that
�de(z) here is determined by the differential Eqs. (15) and
(16), from which the spatial curvature enters.

3 The observation data

In this section, we briefly describe the observational data we
use in the fits.

3.1 The SN data

We use the SNLS3 data compilation [77] consisting of 472
data for the combined set of SALT2 and SiFTO. Besides
the usual application of the SNLS data, here we highlight
the consideration of the possibility that the color–luminosity
parameter β is time-varying during the cosmic evolution. It

has been shown by the recent studies [61–72] that the stretch
parameter α is consistent with a constant but the color param-
eter β may exhibit significant evolution at high statistical sig-
nificance (about 6σ ). Thus, besides the consideration of the
case of a constantβ, we also consider the case of time-varying
β by using the linear parametrization, β(z) = β0 +β1z (note
that it has been proven [68–72] that the evolution of β is
almost independent of the background cosmological model
and insensitive to the parametrized form of β). For the time-
varying β case, one needs to change a small part in procedure,
i.e., the total covariance matrix C = Dstat + Cstat + Csys,
where Dstat is the diagonal part of the statistical uncertainty,
Cstat and Csys are statistical and systematic covariance matri-
ces, respectively. For a more detailed explanation, see, e.g.,
[68–72].

3.2 The BAO data

We use the BAO measurements from several galaxy sur-
veys: rs(zd)/DV(0.1) = 0.336 ± 0.015 from the 6dF
Galaxy Survey [78]; DV(0.35)/rs(zd) = 8.88 ± 0.17
from the SDSS-DR7 [79]; DV(0.32)

(
rfid

s /rs
) = 1264 ±

25 Mpc and DV(0.57)
(
rfid

s /rs
) = 2056 ± 20 Mpc from the

BOSS-DR11 [80]; DV(0.44)
(
rfid

s /rs
) = 1716 ± 83 Mpc,

DV(0.60)
(
rfid

s /rs
) = 2221 ± 101 Mpc, and DV(0.73)(

rfid
s /rs

) = 2516 ± 86 Mpc from the “improved” WiggleZ
Dark Energy Survey [81]. Note that the three WiggleZ data
are correlated with each other, and the inverse covariance
matrix for them can be found in [81].

3.3 The CMB data

For the CMB data, we use the “Planck distance priors”
derived from the Planck first released data [82]. It was
shown that the “acoustic scale” la ≡ πr(z∗)/rs(z∗), the shift

parameter R ≡
√

�m H2
0 r(z∗), together with the baryon

density ωb ≡ �bh2, provide an efficient summary of the
CMB data. Using the Planck+lensing+WP data and assum-
ing a non-flat universe, the three parameters are obtained:
la = 301.57 ± 0.18, R = 1.7407 ± 0.0094, and ωb =
0.02228 ± 0.00030. The inverse covariance matrix for them
is also given in [82].

3.4 The H0 measurement

We use the result of direct measurement of the Hubble con-
stant [83], H0 = 73.8 ± 2.0 km s−1 Mpc−1, from the
supernova magnitude–redshift relation calibrated by the HST
observations of Cepheid variables in the host galaxies of eight
SN.

We apply the χ2 statistic to estimate the model parame-
ters. For each data set, we calculate χ2

ξ = (ξobs − ξ th)2/σ 2
ξ ,
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Table 1 The joint constraint results for the dark energy models in non-
flat universe, i.e., the �CDM model, the HDE model proposed in this
work, and the HDE model proposed by Huang and Li [55], by using the

SN+BAO+CMB+H0 data. For each model, two cases are considered
for the SN data, i.e., the constant β and the linear varying β(z) cases

Parameter �CDM HDE (this work) HDE (HL04 [55])

Constant β Linear β(z) Constant β Linear β(z) Constant β Linear β(z)

c – – 0.654+0.052
−0.051 0.721+0.063

−0.062 0.644+0.057
−0.043 0.703+0.079

−0.042

�m0 0.292+0.007
−0.006 0.296+0.006

−0.008 0.281+0.008
−0.010 0.291+0.008

−0.010 0.279+0.011
−0.009 0.289+0.012

−0.008

103�k0 7.636+5.821
−5.284 1.582+2.401

−3.045 4.902+3.024
−2.705 7.315+3.148

−3.463 1.582+2.401
−3.045 7.203+3.387

−2.979

h 0.691+0.006
−0.006 0.690+0.006

−0.006 0.707+0.013
−0.010 0.694+0.013

−0.010 0.710+0.010
−0.013 0.698+0.009

−0.013

α 1.422+0.104
−0.106 1.410+0.111

−0.086 1.425+0.010
−0.101 1.401+0.115

−0.072 1.418+0.106
−0.094 1.433+0.078

−0.104

β0 3.243+0.115
−0.099 1.441+0.323

−0.368 3.251+0.112
−0.098 1.464+0.333

−0.347 3.273+0.084
−0.121 1.463+0.362

−0.328

β1 – 5.092+1.052
−0.885 – 5.057+0.943

−0.962 – 5.028+0.938
−0.967

χ2
min 430.634 393.106 428.993 393.873 429.018 393.876

where ξobs is the measured value of observable given by
observation, ξ th is the corresponding theoretic value given
by theory, and σξ is the 1σ standard deviation. In our joint
SN+BAO+CMB+H0 fit, the total χ2 is given by

χ2 = χ2
SN + χ2

BAO + χ2
CMB + χ2

H0
. (18)

We obtain the best-fit value and the 1–3σ confidence level
(CL) ranges for the model parameters by performing a
Markov-chain Monte Carlo [84] likelihood analysis.

4 The fitting results

We run eight independent chains with 300,000 data for each
chain and obtain the fit values for the cosmological param-
eters. In the joint SN+BAO+CMB+H0 constraints, we con-
sider two cases, i.e., for the SNLS3 data set, we consider
constant β case and time-varying (linear parametrization)
β(z) case. We will report the fit results for these two cases.

Our constraint results are summarized in Table 1. Actu-
ally, in this table, we also show the constraint results for the
�CDM model and the HDE model proposed by Huang and
Li [55] for comparison (here we use HDE as an abbreviation
for the holographic dark energy). But in this section we will
only discuss the results for our model and we leave the fur-
ther discussions including the comparison of the models in
the next section.

In Table 1, we show the fit values for the important param-
eters and we directly compare the constant β case and the
linear β(z) case. The parameters α, β0, and β1 are the param-
eters of supernova observation. Our calculations show that,
for the constant β case, β = β0 = 3251+0.112

−0.098, and for the

linear β(z) case, β0 = 1.464+0.333
−0.347 and β1 = 5.057+0.943

−0.962.
We find that considering the time-varying β can reduce the

χ2
min value by about 35. The results are consistent with those

obtained in [68–72].
We first discuss the results of the constant β case. The 1–

3σ posterior possibility contours in the �m0–c and the �m0–
�k0 parameter planes are shown in Fig. 1. We obtain the fit
results c = 0.654+0.052

−0.051, �m0 = 0.281+0.008
−0.010, and �k0 =

(4.902+3.024
−2.705) × 10−3. We find that in this case c < 1 is at

the 6.7σ level. Thus, according to this result, the holographic
dark energy is very likely to become a phantom energy in the
future evolution.1 To show the w = −1-crossing behavior
and future phantom manner of the holographic dark energy
under the current joint constraint, we reconstruct the evolu-
tion of equation of state w with 1–3σ uncertainties in Fig. 2.
In addition, we find that the fit of the holographic dark energy
model to the current SN+BAO+CMB+H0 data (in the case
of constant β) favors an open universe at the 1.8σ level.

Next, we present the constraint results for the case of lin-
ear β(z). The results of most interest are plotted in Fig. 3, in
which the 1–3σ posterior possibility contours in the �m0–
c and the �m0–�k0 parameter planes are shown in the
upper two panels, and the lower two panels show the fit
result for color parameter β of supernova, i.e., the recon-
structed evolution of β(z) (with 1–3σ level uncertainties)
and the one-dimensional posterior possibility distribution of
β1. We obtain c = 0.721+0.063

−0.062, �m0 = 0.291+0.008
−0.010, and

�k0 = (7.315+3.148
−3.463) × 10−3. So in this case, we find that

c < 1 is at the 4.4σ level. Though this still means that the
holographic dark energy will become a phantom energy in the
future, compared to the constant β case, the likelihood dimin-
ishes evidently. We also show the reconstructed evolution of

1 We have derived the equation of state of the holographic dark energy
[see Eq. (17)], w = −1/3−2

√
�de/(3c). According to this formula, we

can easily find that in the early times w → −1/3 (since �de → 0) and
in the far future w → −1/3 − 2/(3c) (since �de → 1). This explains
why the phantom divide (w = −1) crossing happens when c < 1.
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Ω
k0
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SN (constant β)

Fig. 1 The 1–3σ posterior possibility contours in the �m0–c and the
�m0–�k0 planes, from the SN+BAO+CMB+H0 data, where the con-
stant β case for the SN data is considered

0 2

-1.5

-1.0

-0.5

w
(z
)

z

SN (constant β)

Fig. 2 The reconstructed evolution of w under the constraints from the
SN+BAO+CMB+H0 data, where the constant β case for the SN data is
considered

w with 1–3σ errors for this case in Fig. 4, for comparison.
Moreover, the fit of our model to the current joint data in the
case of varying β for SN prefers an open universe at the 2.1σ

level.

Compared to the constant β case, the varying β case
reduces the value of χ2

min by 35.12, which means that the
consideration of the evolution of β could lead to a much
better fit to the data. We note that, according to the Akaike
information criterion, if χ2

min improves by 2 or more with
one additional parameter, its incorporation is justified. We
thus believe that the evolution of β perhaps is truly worthy
of being considered in the SN treatment. We find that in this
case β1 deviates from 0 at the 5.3σ level, as shown in the
panel of one-dimensional distribution of β1 in Fig. 3. From
the present analysis and the previous ones in [68], we suspect
that the absence of the consideration of β’s evolution perhaps
is a potential systematic error source for the supernova data.
We have seen that the consideration of time-varying β in SN
data could significantly impact on the joint constraint results.

5 Discussion

In this section, we discuss some related issues concerning
the model presented in this work.

We first stress the importance of the consideration of
the spatial curvature in the holographic dark energy model.
Actually, the flatness of the observable universe is one of
the important predictions of conventional inflationary cos-
mology. The inflation models theoretically produce �k0 on
the order of the magnitude of quantum fluctuations, i.e.,
�k0 ∼ 10−5. However, the current observational limit on
�k0 is of order 10−3 [85]. On the other hand, since the spatial
curvature is degenerate with the parameters of dark energy,
it is of great importance to consider the spatial curvature
in studying dynamical dark energy models [86]. Therefore,
when we study the holographic dark energy model, in par-
ticular, the exploration of the parameter space of the model,
it is necessary to include �k0 as a free parameter in the cos-
mological fit.

In this work, we proposed a non-flat universe model for the
holographic dark energy. Compared to the model by Huang
and Li [55] (hereafter, HL04 model), the difference is that the
IR cutoff scale L is taken to be the exact event horizon Rh in
our model. Our motivation is clear: In the flat-universe model
of holographic dark energy, the IR cutoff L is taken to be
the event horizon; it is obvious that, in the non-flat-universe
model, L should also be taken to be the event horizon. This is
obviously more natural and more theoretically/conceptually
concordant with the flat-universe model.

We also make a comparison with the HL04 model in terms
of the results of numerical fit. In Table 1, we present the fit
results for both our model and the HL04 model. For the χ2

values, in the constant β case, we obtain χ2
min = 428.993

for our model and χ2
min = 429.018 for the HL04 model, and

in the linear β(z) case, we obtain χ2
min = 393.873 for our

model and χ2
min = 393.876 for the HL04 model. We find
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Fig. 3 The joint constraints from the SN+BAO+CMB+H0 data, where
the linear β(z) case for the SN data is considered. Upper panels the
1–3σ posterior possibility contours in the �m0–c and the �m0–�k0

planes. Lower panels the reconstructed evolution of β(z) and the one-
dimensional posterior possibility distribution of β1

0 2

-1.5

-1.0

-0.5

w
(z
)

z

SN (linear β(z))

Fig. 4 The reconstructed evolution of w under the constraints from the
SN+BAO+CMB+H0 data, where the linear β(z) case for the SN data
is considered

that our model is only slightly better than the HL04 model in
the cosmological fit. This is obvious because the difference
between the two is rather subtle. It should be stressed that the
advantage of our model is mainly in the aspect of theoretical
consistence.

Furthermore, the comparison with the �CDM model is
also made. In Table 1, we show the fit results for the �CDM
model. For the �CDM model, we have χ2

min = 430.634 for
the constant β case and χ2

min = 393.106 for the linear β(z)

case. So we find that, in the constant β case the holographic
dark energy model fits the current data slightly better than
the �CDM model (�χ2 = −1.641), but in the linear β(z)
case the holographic dark energy model is slightly worse
than the �CDM model (�χ2 = 0.767). Considering that
the holographic dark energy model has one more parameter
than the �CDM model, the latter is actually more favored
by the current data. This conclusion is in agreement with the
previous studies (see, e.g., [87]). In fact, the �CDM model
is still the best one among various dark energy models in
fitting the observational data. But we wish to mention that
the holographic dark energy model is much better than other
related variant models (also with holographic origin), e.g.,
the new agegraphic dark energy model [74] and the Ricci
dark energy model [75], in fitting the observational data; see
[88] for an investigation based on the Bayesian evidence and
[87] for an investigation based on the Akaike and Bayesian
information criteria.

Finally, we wish to emphasize that the fitting results are
insensitive to the parametrized forms of β(z). In [68], the
authors have tested several parametrization forms for β(z),
i.e., the linear form, the quadratic form, and a step function
form, and found that the evolution of β and the fitting results
are insensitive to the forms of β(z). So in this paper we only
consider the linear form of β(z) in the cosmological fit.
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6 Summary

The holographic dark energy in a flat universe is defined by
taking the IR cutoff L to be the event horizon of the uni-
verse. Therefore, to be more theoretically consistent, we put
forward in this paper that the holographic dark energy in a
non-flat universe should also be defined by taking precisely
the event horizon of the universe, Rh, as the IR cutoff L of the
theory. Based on this assumption, we establish an alternative
model for the holographic dark energy in a non-flat universe,
which is, undoubtedly, more conceptually concordant with
the flat-universe model.

We then constrain the model by using the recent observa-
tional data including the SN Ia data from SNLS3, the BAO
data from 6dF, SDSS-DR7, BOSS-DR11, and WiggleZ, the
CMB data from Planck, and the H0 direct measurement from
HST. For the SN data, we discuss two cases. Since some pre-
vious studies [61–72] have shown that the color–luminosity
parameter β of supernovae is likely to vary during the cos-
mic evolution, besides the constant β case, we also consider
the case in which β is time-varying. Owing to the fact that
β is almost independent of background cosmological model
and insensitive to the parametrized form [68–72], we only
consider a linear parametrization form, β(z) = β0 + β1z, in
the fits.

We find that, compared to the constant β case, the time-
varying β case reduces the value of χ2

min by about 35 and
results in that β deviates from a constant at about the 5σ

level. These results are well consistent with those of previ-
ous studies [68–72]. The significant reduction of χ2

min means
that considering the redshift-evolution of β could lead to a
much better fit to the data. We find that the consideration
of varying β in SN data could largely impact on the results
of the joint constraints. All these effects we observe might
imply that the absence of the consideration of β’s evolution
could be a potential systematic error source for the supernova
data.

For the parameter c of the holographic dark energy, the
constant β fit gives c = 0.65 ± 0.05 (indicating c < 1 at the
6.7σ level) and the time-varying β fit yields c = 0.72±0.06
(indicating c < 1 at the 4.4σ level). Both cases favor an open
universe at about the 2σ level.
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