109 research outputs found

    Downgrading MELD Improves the Outcomes after Liver Transplantation in Patients with Acute-on-Chronic Hepatitis B Liver Failure

    Get PDF
    Background: High score of model for end-stage liver diseases (MELD) before liver transplantation (LT) indicates poor prognosis. Artificial liver support system (ALSS) has been proved to effectively improve liver and kidney functions, and thus reduce the MELD score. We aim to evaluate whether downgrading MELD score could improve patient survival after LT. Methodology/Principal Findings: One hundred and twenty-six LT candidates with acute-on-chronic hepatitis B liver failure and MELD score 30wereincludedinthisprospectivestudy.Ofthe126patients,42receivedemergencyLTwithin72h(ELTgroup)andtheother84weregivenALSSassalvagetreatment.Ofthe84patients,33werefoundtohavereducedMELDscore(,30)onthedayofLT(DGMgroup),51underwentLTwithpersistenthighMELDscore(N−DGMgroup).Themedianwaitingtimeforadonorwas10forDGMgroupand9.5daysforN−DGMgroup.InN−DGMgroupthereisasignificantlyhigheroverallmortality(43.130 were included in this prospective study. Of the 126 patients, 42 received emergency LT within 72 h (ELT group) and the other 84 were given ALSS as salvage treatment. Of the 84 patients, 33 were found to have reduced MELD score (,30) on the day of LT (DGM group), 51 underwent LT with persistent high MELD score (N-DGM group). The median waiting time for a donor was 10 for DGM group and 9.5 days for N-DGM group. In N-DGM group there is a significantly higher overall mortality (43.1%) than that in ELT group (16.7%) and DGM group (15.2%). N-DGM (vs. ECT and DGM) was the only independent risk factor of overall mortality (P = 0.003). Age.40 years and the interval from last ALSS to LT.48 h were independent negative influence factors of downgrading MELD. Conclusions/Significance: Downgrading MELD for liver transplant candidates with MELD score 30 was effective i

    Quarantine for pandemic influenza control at the borders of small island nations

    Get PDF
    Background: Although border quarantine is included in many influenza pandemic plans, detailed guidelines have yet to be formulated, including considerations for the optimal quarantine length. Motivated by the situation of small island nations, which will probably experience the introduction of pandemic influenza via just one airport, we examined the potential effectiveness of quarantine as a border control measure. Methods: Analysing the detailed epidemiologic characteristics of influenza, the effectiveness of quarantine at the borders of islands was modelled as the relative reduction of the risk of releasing infectious individuals into the community, explicitly accounting for the presence of asymptomatic infected individuals. The potential benefit of adding the use of rapid diagnostic testing to the quarantine process was also considered. Results: We predict that 95% and 99% effectiveness in preventing the release of infectious individuals into the community could be achieved with quarantine periods of longer than 4.7 and 8.6 days, respectively. If rapid diagnostic testing is combined with quarantine, the lengths of quarantine to achieve 95% and 99% effectiveness could be shortened to 2.6 and 5.7 days, respectively. Sensitivity analysis revealed that quarantine alone for 8.7 days or quarantine for 5.7 days combined with using rapid diagnostic testing could prevent secondary transmissions caused by the released infectious individuals for a plausible range of prevalence at the source country (up to 10%) and for a modest number of incoming travellers (up to 8000 individuals). Conclusion: Quarantine atthe borders of island nations could contribute substantially to preventing the arrival of pandemic influenza (or at least delaying the arrival date). For small island nations we recommend consideration of quarantine alone for 9 days or quarantine for 6 days combined with using rapid diagnostic testing (if available). © 2009 Nishiura et al; licensee BioMed Central Ltd.published_or_final_versio

    Early efforts in modeling the incubation period of infectious diseases with an acute course of illness

    Get PDF
    The incubation period of infectious diseases, the time from infection with a microorganism to onset of disease, is directly relevant to prevention and control. Since explicit models of the incubation period enhance our understanding of the spread of disease, previous classic studies were revisited, focusing on the modeling methods employed and paying particular attention to relatively unknown historical efforts. The earliest study on the incubation period of pandemic influenza was published in 1919, providing estimates of the incubation period of Spanish flu using the daily incidence on ships departing from several ports in Australia. Although the study explicitly dealt with an unknown time of exposure, the assumed periods of exposure, which had an equal probability of infection, were too long, and thus, likely resulted in slight underestimates of the incubation period

    Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.

    Get PDF
    Protein-protein interactions (PPIs) are of pivotal importance in the regulation of biological systems and are consequently implicated in the development of disease states. Recent work has begun to show that, with the right tools, certain classes of PPI can yield to the efforts of medicinal chemists to develop inhibitors, and the first PPI inhibitors have reached clinical development. In this Review, we describe the research leading to these breakthroughs and highlight the existence of groups of structurally related PPIs within the PPI target class. For each of these groups, we use examples of successful discovery efforts to illustrate the research strategies that have proved most useful.JS, DES and ARB thank the Wellcome Trust for funding.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nrd.2016.2

    Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions

    Get PDF
    BackgroundTargeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing.ResultsAll panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5-20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden.ConclusionThis comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.Peer reviewe

    Switches between accretion structures during flares in 4U 1901+03

    Get PDF
    We report on our analysis of the 2019 outburst of the X-ray accreting pulsar 4U 1901+03 observed with Insight-HXMT and NICER. Both spectra and pulse profiles evolve significantly in the decaying phase of the outburst. Dozens of flares are observed throughout the outburst. They are more frequent and brighter at the outburst peak. We find that the flares, which have a duration from tens to hundreds of seconds, are generally brighter than the persistent emission by a factor of similar to 1.5. The pulse-profile shape during the flares can be significantly different from that of the persistent emission. In particular, a phase shift is clearly observed in many cases. We interpret these findings as direct evidence of changes of the pulsed beam pattern, due to transitions between the sub- and supercritical accretion regimes on a short time-scale. We also observe that at comparable luminosities the flares' pulse profiles are rather similar to those of the persistent emission. This indicates that the accretion on the polar cap of the neutron star is mainly determined by the luminosity, i.e. the mass accretion rate
    • …
    corecore