87 research outputs found

    Modeling realistic Earth matter density for CP violation in neutrino oscillation

    Full text link
    We examine the effect of a more realistic Earth matter density model which takes into account of the local density variations along the baseline of a possi ble 2100 km very long baseline neutrino oscillation experiment. Its influence to the measurement of CP violation is investigated and a comparison with the commonly used global density models made. Significant differences are found in the comparison of the results of the different density models.Comment: 16 pages, 8 figure

    Anomalous metamagnetism in the low carrier density Kondo lattice YbRh3Si7

    Full text link
    We report complex metamagnetic transitions in single crystals of the new low carrier Kondo antiferromagnet YbRh3Si7. Electrical transport, magnetization, and specific heat measurements reveal antiferromagnetic order at T_N = 7.5 K. Neutron diffraction measurements show that the magnetic ground state of YbRh3Si7 is a collinear antiferromagnet where the moments are aligned in the ab plane. With such an ordered state, no metamagnetic transitions are expected when a magnetic field is applied along the c axis. It is therefore surprising that high field magnetization, torque, and resistivity measurements with H||c reveal two metamagnetic transitions at mu_0H_1 = 6.7 T and mu_0H_2 = 21 T. When the field is tilted away from the c axis, towards the ab plane, both metamagnetic transitions are shifted to higher fields. The first metamagnetic transition leads to an abrupt increase in the electrical resistivity, while the second transition is accompanied by a dramatic reduction in the electrical resistivity. Thus, the magnetic and electronic degrees of freedom in YbRh3Si7 are strongly coupled. We discuss the origin of the anomalous metamagnetism and conclude that it is related to competition between crystal electric field anisotropy and anisotropic exchange interactions.Comment: 23 pages and 4 figures in the main text. 7 pages and 5 figures in the supplementary materia

    Lenalidomide regulates CNS autoimmunity by promoting M2 macrophages polarization

    Get PDF
    Multiple sclerosis (MS) is a chronic and debilitating neurological disorder of the central nervous system (CNS), characterized by infiltration of leukocytes into CNS and subsequent demyelination. Emerging evidences have revealed the beneficial roles of M2 macrophages in ameliorating experimental autoimmune encephalomyelitis (EAE), a model for MS. Here, we identify that lenalidomide alone could promote macrophages M2 polarization to prevent the progression of EAE, which is associated with subsequent inhibition of proinflammatory Th1 and Th17 cells both in peripheral lymph system and CNS. Depletion of macrophages by pharmacology treatment of clodronate liposomes or transferring lenalidomide-induced BMDMs in EAE mice completely abolished the therapeutic effect of lenalidomide or prevented EAE development, respectively. The macrophages-derived IL10 was upregulated both in vivo and in vitro after lenalidomide treatment. Moreover, lenalidomide-treated IL10-dificient EAE mice had higher clinical scores and more severe CNS damage, and intravenous injection of lenalidomide-treated IL10BMDMs into mice with EAE at disease onset did not reverse disease severity, implying IL10 may be essential in lenalidomide-ameliorated EAE. Mechanistically, lenalidomide significantly increased expression and autocrine secretion of IL10, subsequently activated STAT3-mediated expression of Ym1. These studies facilitate the development of potential novel therapeutic application of lenalidomide for the treatment of MS

    Thermal leptogenesis in a model with mass varying neutrinos

    Full text link
    In this paper we consider the possibility of neutrino mass varying during the evolution of the Universe and study its implications on leptogenesis. Specifically, we take the minimal seesaw model of neutrino masses and introduce a coupling between the right-handed neutrinos and the dark energy scalar field, the Quintessence. In our model, the right-handed neutrino masses change as the Quintessence scalar evolves. We then examine in detail the parameter space of this model allowed by the observed baryon number asymmetry. Our results show that it is possible to lower the reheating temperature in this scenario in comparison with the case that the neutrino masses are unchanged, which helps solve the gravitino problem. Furthermore, a degenerate neutrino mass patten with mim_i larger than the upper limit given in the minimal leptogenesis scenario is permitted.Comment: 18 pages, 7 figures, version to appear in PR

    Search for the lepton-family-number nonconserving decay \mu -> e + \gamma

    Full text link
    The MEGA experiment, which searched for the muon- and electron-number violating decay \mu -> e + \gamma, is described. The spectrometer system, the calibrations, the data taking procedures, the data analysis, and the sensitivity of the experiment are discussed. The most stringent upper limit on the branching ratio of \mu -> e + \gamma) < 1.2 x 10^{-11} was obtained

    Generalized Second Law of Thermodynamics in f(T)f(T) Gravity with Entropy Corrections

    Full text link
    We study the generalized second law (GSL) of thermodynamics in f(T)f(T) cosmology. We consider the universe as a closed bounded system filled with nn component fluids in the thermal equilibrium with the cosmological boundary. We use two different cosmic horizons: the future event horizon and the apparent horizon. We show the conditions under which the GSL will be valid in specific scenarios of the quintessence and the phantom energy dominated eras. Further we associate two different entropies with the cosmological horizons: with a logarithmic correction term and a power-law correction term. We also find the conditions for the GSL to be satisfied or violated by imposing constraints on model parameters.Comment: 17 pages, no figure, title changed, version accepted for publication in Astrophysics and Space Scienc

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors

    Get PDF
    IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment\u27s photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors
    corecore