46 research outputs found

    The transfer of dry-land strength & power into thrust in competitive swimming

    Get PDF
    The aim was to compare the transfer of dry-land strength and power (S&P) of the shoulder into thrust in front-crawl between swimmers of different competitive levels. Four elite and six sub-elite swimmers were selected to perform a dry-land or an in-water test in random order. The dry-land S&P measurements comprised mean torque, peak torque and mean power of the shoulder rotators of the dominant and non-dominant upper-limbs that were assessed on an isokinetic dynamometer at 90°/s and 180°/s. In-water mean thrust, peak thrust and peak power were collected using an in-house customised system composed of differential pressure sensors and an underwater camera during a 25 m freestyle swim at three different paces (400 m pace, 200 m pace, all-out). There were non-significant and trivial variations in dry-land S&P between elite and sub-elite swimmers. The variations were non-significant but mostly large in the case of thrust. Correlation coefficients of elite swimmers were significantly larger than sub-elite counterparts. In conclusion, elite swimmers seem to be more efficient than sub-elite swimmers at transferring dry-land S&P into thrust.This work was supported by the Singapore Sports Science & Technology Research Grantinfo:eu-repo/semantics/publishedVersio

    Reversed Drifting Quasi-periodic Pulsating Structure in an X1.3 Solar Flare on 2005 July 30

    Full text link
    Based on the analysis of the microwave observations at frequency of 2.60 -- 3.80 GHz in a solar X1.3 flare event observed at Solar Broadband RadioSpectrometer in Huairou (SBRS/Huairou) on 2005 July 30, an interesting reversed drifting quasi-periodic pulsating structure (R-DPS) is confirmed. The R-DPS is mainly composed of two drifting pulsating components: one is a relatively slow very short-period pulsation (VSP) with period of about 130 -- 170 ms, the other is a relatively fast VSP with period of about 70 -- 80 ms. The R-DPS has a weak left-handed circular polarization. Based on the synthetic investigations of Reuven Ramaty High Energy Solar Spectroscopic Imaging (RHESSI) hard X-ray, Geostationary Operational Environmental Satellite (GOES) soft X-ray observation, and magnetic field extrapolation, we suggest the R-DPS possibly reflects flaring dynamic processes of the emission source regions

    The regulation of miRNAs by reconstituted high-density lipoproteins in diabetes-impaired angiogenesis

    Get PDF
    Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. We recently found that reconstituted high-density lipoproteins (rHDL) rescue diabetes-impaired angiogenesis. microRNAs (miRNAs) regulate angiogenesis and are transported within HDL to sites of injury/repair. The role of miRNAs in the rescue of diabetes-impaired angiogenesis by rHDL is unknown. Using a miRNA array, we found that rHDL inhibits hsa-miR-181c-5p expression in vitro and using a hsa-miR-181c-5p mimic and antimiR identify a novel anti-angiogenic role for miR-181c-5p. miRNA expression was tracked over time post-hindlimb ischaemic induction in diabetic mice. Early post-ischaemia when angiogenesis is important, rHDL suppressed hindlimb mmu-miR-181c-5p. mmu-miR-181c-5p was not detected in the plasma or within HDL, suggesting rHDL specifically targets mmu-miR-181c-5p at the ischaemic site. Three known angiogenic miRNAs (mmu-miR-223-3p, mmu-miR-27b-3p, mmu-miR-92a-3p) were elevated in the HDL fraction of diabetic rHDL-infused mice early post-ischaemia. This was accompanied by a decrease in plasma levels. Only mmu-miR-223-3p levels were elevated in the hindlimb 3 days post-ischaemia, indicating that rHDL regulates mmu-miR-223-3p in a time-dependent and site-specific manner. The early regulation of miRNAs, particularly miR-181c-5p, may underpin the rescue of diabetes-impaired angiogenesis by rHDL and has implications for the treatment of diabetes-related vascular complications

    Nernst Effect and Anomalous Transport in Cuprates: A Preformed-Pair Alternative to the Vortex Scenario

    Full text link
    We address those puzzling experiments in underdoped high TcT_c superconductors which have been associated with normal state "vortices" and show these data can be understood as deriving from preformed pairs with onset temperature T>TcT^* > T_c. For uncorrelated bosons in small magnetic fields, and arbitrary T/TcT^*/T_c, we present the exact contribution to \textit{all} transport coefficients. In the overdoped regime our results reduce to those of standard fluctuation theories (TTcT^*\approx T_c). Semi-quantitative agreement with Nernst, ac conductivity and diamagnetic measurements is quite reasonable.Comment: 9 pages, 4 figures; Title, abstract and contents modified, new references added, figures changed, one more figure added; to be published on PR

    Multi-timescale Solar Cycles and the Possible Implications

    Full text link
    Based on analysis of the annual averaged relative sunspot number (ASN) during 1700 -- 2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle (Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4, respectively since 1700); and 51.5-yr Cycle. From similarities, an extrapolation of forthcoming solar cycles is made, and found that the solar cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its apex around 2012-2014 in the vale between G3 and G4. Additionally, most Schwabe cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The comparisons between ASN and the annual flare numbers with different GOES classes (C-class, M-class, X-class, and super-flare, here super-flare is defined as \geq X10.0) and the annal averaged radio flux at frequency of 2.84 GHz indicate that solar flares have a tendency: the more powerful of the flare, the later it takes place after the onset of the Schwabe cycle, and most powerful flares take place in the decay phase of Schwabe cycle. Some discussions on the origin of solar cycles are presented.Comment: 8 pages, 4 figure

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure

    Pathogen-sugar interactions revealed by universal saturation transfer analysis

    Get PDF
    Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an "end-on" manner. uSTA-guided modeling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis

    Evidence for kappa Meson Production in J/psi -> bar{K}^*(892)^0K^+pi^- Process

    Get PDF
    Based on 58 million BESII J/psi events, the bar{K}^*(892)^0K^+pi^- channel in K^+K^-pi^+pi^- is studied. A clear low mass enhancement in the invariant mass spectrum of K^+pi^- is observed. The low mass enhancement does not come from background of other J/psi decay channels, nor from phase space. Two independent partial wave analyses have been performed. Both analyses favor that the low mass enhancement is the kappa, an isospinor scalar resonant state. The average mass and width of the kappa in the two analyses are 878 +- 23^{+64}_{-55} MeV/c^2 and 499 +- 52^{+55}_{-87} MeV/c^2, respectively, corresponding to a pole at (841 +- 30^{+81}_{-73}) - i(309 +- 45^{+48}_{-72}) MeV/c^2.Comment: 17 pages, 5 figure

    Precison Measurements of the Mass, the Widths of ψ(3770)\psi(3770) Resonance and the Cross Section σ[e+eψ(3770)]\sigma[e^+e^-\to \psi(3770)] at Ecm=3.7724E_{\rm cm}=3.7724 GeV

    Full text link
    By analyzing the RR values measured at 68 energy points in the energy region between 3.650 and 3.872 GeV reported in our previous paper, we have precisely measured the mass, the total width, the leptonic width and the leptonic decay branching fraction of the ψ(3770)\psi(3770) to be Mψ(3770)=3772.4±0.4±0.3{M}_{\psi(3770)}=3772.4 \pm 0.4 \pm 0.3 MeV, Γψ(3770)tot=28.6±1.2±0.2\Gamma_{\psi(3770)}^{\rm tot} = 28.6 \pm 1.2 \pm 0.2 MeV, Γψ(3770)ee=279±11±13\Gamma_{\psi(3770)}^{ee} = 279 \pm 11 \pm 13 eV and B[ψ(3770)e+e]=(0.98±0.04±0.04)×105B[\psi(3770)\to e^+e^-]=(0.98\pm 0.04\pm 0.04)\times 10^{-5}, respectively, which result in the observed cross section σobs[e+eψ(3770)]=7.25±0.27±0.34\sigma^{\rm obs}[e^+e^-\to \psi(3770)]=7.25\pm 0.27 \pm 0.34 nb at s=3772.4\sqrt{s}=3772.4 MeV. We have also measured Ruds=2.121±0.023±0.084R_{\rm uds}=2.121\pm 0.023 \pm 0.084 for the continuum light hadron production in the region from 3.650 to 3.872 GeV.Comment: 5 pages, 2 figure
    corecore