20,510 research outputs found

    A magnetohydrodynamic model for multi-wavelength flares from Sagittarius~A^\star (I): model and the near-infrared and X-ray flares

    Full text link
    Flares from the supermassive black hole in our Galaxy, Sagittarius~A^\star (Sgr A^\star), are routinely observed over the last decade or so. Despite numerous observational and theoretical efforts, the nature of such flares still remains poorly understood, although a few phenomenological scenarios have been proposed. In this work, we develop the Yuan et al. (2009) scenario into a magnetohydrodynamic (MHD) model for Sgr A^\star flares. This model is analogous with the theory of solar flares and coronal mass ejection in solar physics. In the model, magnetic field loops emerge from the accretion flow onto Sgr A^\star and are twisted to form flux ropes because of shear and turbulence. The magnetic energy is also accumulated in this process until a threshold is reached. This then results in a catastrophic evolution of a flux rope with the help of magnetic reconnection in the current sheet. In this catastrophic process, the magnetic energy is partially converted into the energy of non-thermal electrons. We have quantitatively calculated the dynamical evolution of the height, size, and velocity of the flux rope, as well as the magnetic field in the flare regions, and the energy distribution of relativistic electrons in this process. We further calculate the synchrotron radiation from these electrons and compare the obtained light curves with the observed ones. We find that the model can reasonably explain the main observations of near-infrared (NIR) and X-ray flares including their light curves and spectra. It can also potentially explain the frequency-dependent time delay seen in radio flare light curves.Comment: 17 pages, 13 figures, accepted by MNRA

    Characterization and Antioxidant Activity of the Complex of Phloridzin and Hydroxypropyl-β- cyclodextrin

    Get PDF
    Purpose: To improve the aqueous solubility of phloridzin by complexing it with hydroxypropyl-β-cyclodextrin (HP-β-CD).Methods: The complex of phloridzin with HP-β-CD was prepared by freeze-drying method. The physicochemical properties of the complex were investigated by ultraviolet-visible spectrometry (UV), infrared spectrometry (IR), differential scanning calorimetry (DSC) and x-ray diffractometry (XRD). The antioxidant activity was examined by DPPH and ABTS radical-scavenging activities.Results: Phloridzin in the complex was molecularly dispersed in HP-β-CD matrix. The complex was an effective scavenger of DPPH and ABTS radicals. At a concentration of 0.8 mg/mL and 30 μg/mL, DPPH and ABTS radical scavenging activities of the complex were 83.7 and 74.9 %, respectively.Conclusion: By forming inclusion complex with HP-β-CD, the solubility of phloridzin in water was significantly enhanced. The complex showed strong DPPH and ABTS radical scavenging activities.Keywords: Phloridzin, Hydroxypropyl-β-cyclodextrin, Complex, Antioxidan

    Non-damping oscillations at flaring loops

    Full text link
    Context. QPPs are usually detected as spatial displacements of coronal loops in imaging observations or as periodic shifts of line properties in spectroscopic observations. They are often applied for remote diagnostics of magnetic fields and plasma properties on the Sun. Aims. We combine imaging and spectroscopic measurements of available space missions, and investigate the properties of non-damping oscillations at flaring loops. Methods. We used the IRIS to measure the spectrum over a narrow slit. The double-component Gaussian fitting method was used to extract the line profile of Fe XXI 1354.08 A at "O I" window. The quasi-periodicity of loop oscillations were identified in the Fourier and wavelet spectra. Results. A periodicity at about 40 s is detected in the line properties of Fe XXI, HXR emissions in GOES 1-8 A derivative, and Fermi 26-50 keV. The Doppler velocity and line width oscillate in phase, while a phase shift of about Pi/2 is detected between the Doppler velocity and peak intensity. The amplitudes of Doppler velocity and line width oscillation are about 2.2 km/s and 1.9 km/s, respectively, while peak intensity oscillate with amplitude at about 3.6% of the background emission. Meanwhile, a quasi-period of about 155 s is identified in the Doppler velocity and peak intensity of Fe XXI, and AIA 131 A intensity. Conclusions. The oscillations at about 40 s are not damped significantly during the observation, it might be linked to the global kink modes of flaring loops. The periodicity at about 155 s is most likely a signature of recurring downflows after chromospheric evaporation along flaring loops. The magnetic field strengths of the flaring loops are estimated to be about 120-170 G using the MHD seismology diagnostics, which are consistent with the magnetic field modeling results using the flux rope insertion method.Comment: 9 pages, 9 figures, 1 table, accepted by A&

    Statistics of X-ray flares of Sagittarius A*: evidence for solar-like self-organized criticality phenomenon

    Get PDF
    X-ray flares have routinely been observed from the supermassive black hole, Sagittarius A^\star (Sgr A^\star), at our Galactic center. The nature of these flares remains largely unclear, despite of many theoretical models. In this paper, we study the statistical properties of the Sgr A^\star X-ray flares, by fitting the count rate (CR) distribution and the structure function (SF) of the light curve with a Markov Chain Monte Carlo (MCMC) method. With the 3 million second \textit{Chandra} observations accumulated in the Sgr A^\star X-ray Visionary Project, we construct the theoretical light curves through Monte Carlo simulations. We find that the 282-8 keV X-ray light curve can be decomposed into a quiescent component with a constant count rate of 6×103 \sim6\times10^{-3}~count s1^{-1} and a flare component with a power-law fluence distribution dN/dEEαEdN/dE\propto E^{-\alpha_{\rm E}} with αE=1.65±0.17\alpha_{\rm E}=1.65\pm0.17. The duration-fluence correlation can also be modelled as a power-law TEαETT\propto E^{\alpha_{\rm ET}} with αET<0.55\alpha_{\rm ET} < 0.55 (95%95\% confidence). These statistical properties are consistent with the theoretical prediction of the self-organized criticality (SOC) system with the spatial dimension S=3S = 3. We suggest that the X-ray flares represent plasmoid ejections driven by magnetic reconnection (similar to solar flares) in the accretion flow onto the black hole.Comment: to appear in Ap

    On cost-effective communication network designing

    Full text link
    How to efficiently design a communication network is a paramount task for network designing and engineering. It is, however, not a single objective optimization process as perceived by most previous researches, i.e., to maximize its transmission capacity, but a multi-objective optimization process, with lowering its cost to be another important objective. These two objectives are often contradictive in that optimizing one objective may deteriorate the other. After a deep investigation of the impact that network topology, node capability scheme and routing algorithm as well as their interplays have on the two objectives, this letter presents a systematic approach to achieve a cost-effective design by carefully choosing the three designing aspects. Only when routing algorithm and node capability scheme are elegantly chosen can BA-like scale-free networks have the potential of achieving good tradeoff between the two objectives. Random networks, on the other hand, have the built-in character for a cost-effective design, especially when other aspects cannot be determined beforehand.Comment: 6 pages, 4 figure

    Effect of edge decoration on the energy spectrum of semi-infinite lattices

    Full text link
    Analytical studies of the effect of edge decoration on the energy spectrum of semi-infinite one-dimensional (1D) lattice chain with Peierls phase transition and zigzag edged graphene (ZEG) are presented by means of transfer matrix method, in the frame of which the sufficient and necessary conditions for the existence of the edge states are determined. For 1D lattice chain, the zero-energy edge state exists when Peierls phase transition happens regardless whether the decoration exists or not, while the non-zero-energy edge states can be induced and manipulated through adjusting the edge decoration. On the other hand, the semi-infinite ZEG model with nearest-neighbor interaction can be mapped into the 1D lattice chain case. The non-zero-energy edge states can be induced by the decoration as well, and we can obtain the condition of the decoration on the edge for the existence of the novel edge states.Comment: 6 pages,4 figure

    Residual compressive strength of cement-based grouting material with early ages after fire

    Get PDF
    In this paper a comprehensive experimental investigation on the residual compressive strength of cement-based grouting materials after exposed to high temperature is presented. The research focused on the influences of different temperatures, curing ages before and after heating and water mixing ratios on the residual compressive strength of the material. The research indicates that the residual compressive strength of cement-based grouting material reduces significantly after heating. The reduction of the residual compressive strength of the material increases with increasing water mixing ratio. For the specimens exposed to higher temperature, such as 550 0C, the residual compressive strength cannot recover after heating. The research generated a set of reliable and valuable test data for the researches and practical structural engineers in the field of structural fire engineering

    Urban Crime Trends Analysis and Occurrence Possibility Prediction based on Light Gradient Boosting Machine

    Get PDF
    Big Data and Machine learning have been increasingly used to fight against Urban crimes. Our goal is to discover the connection between crime-related factors and the underlying complex crime pattern. Therefore, to predict the possibility of crime occurrence. Light Gradient Boosting Machine (LightGBM) Model is adopted in our study to predict the crime occurrence possibility based on actual crime information. We found that the prediction results are approximately consistent with an actual variation. We hope this work could help with crime prevention and policing

    Pricing extreme mortality risk in the wake of the COVID-19 pandemic

    Full text link
    In pricing extreme mortality risk, it is commonly assumed that interest rate and mortality rate are independent. However, the COVID-19 pandemic calls this assumption into question. In this paper, we employ a bivariate affine jump-diffusion model to describe the joint dynamics of interest rate and excess mortality, allowing for both correlated diffusions and joint jumps. Utilizing the latest U.S. mortality and interest rate data, we find a significant negative correlation between interest rate and excess mortality, and a much higher jump intensity when the pandemic experience is considered. Moreover, we construct a risk-neutral pricing measure that accounts for both diffusion and jump risk premia, and we solve for the market prices of risk based on mortality bond prices. Our results show that the pandemic experience can drastically change investors' perception of the mortality risk market in the post-pandemic era

    Multicontact Motion Retargeting Using Whole-Body Optimization of Full Kinematics and Sequential Force Equilibrium

    Get PDF
    This article presents a multicontact motion adaptation framework that enables teleoperation of high degree-of-freedom robots, such as quadrupeds and humanoids, for loco-manipulation tasks in multicontact settings. Our proposed algorithms optimize whole-body configurations and formulate the retargeting of multicontact motions as sequential quadratic programming, which is robust and stable near the edges of feasibility constraints. Our framework allows real-time operation of the robot and reduces cognitive load for the operator because infeasible commands are automatically adapted into physically stable and viable motions on the robot. The results in simulations with full dynamics demonstrated the effectiveness of teleoperating different legged robots interactively and generating rich multicontact movements. We evaluated the computational efficiency of the proposed algorithms, and further validated and analyzed multicontact loco-manipulation tasks on humanoid and quadruped robots by reaching, active pushing, and various traversal on uneven terrains
    corecore