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ABSTRACT

X-ray flares have routinely been observed from the supermassive black holeat our Galactic center, Sagittarius A

(Sgr Aå). The nature of these flares remains largely unclear, despite many theoretical models. In this paper, we
study the statistical properties of the Sgr Aå X-ray flares by fitting the count rate (CR) distribution and the structure
function of the light curve with a Markov Chain Monte Carlo method. With the 3-million-second Chandra
observations accumulated in the Sgr Aå X-ray Visionary Project, we construct the theoretical light curves through
Monte Carlo simulations. We find that the 2–8 keV X-ray light curve can be decomposed into a quiescent
component with a constant CR of 6 10 3´ - count s−1 and a flare component with a power-law fluence distribution
dN dE E Eµ a- with 1.65 0.17Ea =  . The duration–fluence correlation can also be modeled as a power law
T E ETµ a with 0.55ETa < (95% confidence). These statistical properties are consistent with the theoretical
prediction of the self-organized criticality system with the spatial dimension S = 3. We suggest that the X-ray flares
represent plasmoid ejections driven by magnetic reconnection (similar to solar flares) in the accretion flow onto the
black hole.

Key words: accretion, accretion disks – black hole physics – Galaxy: center – methods: statistical

1. INTRODUCTION

Sagittarius A (Sgr Aå) at the center of the Milky Way is an
excellent laboratory for studying the accretion and ejection of
matter by supermassive black holes (SMBHs). There have been
quite a number of observational and theoretical studies of
Sgr Aå (see reviews by Genzel et al. 2010 and Yuan &
Narayan 2014). The bolometric luminosity of Sgr Aå is
L L10bol

9
Edd~ - (where LEdd is the Eddington luminosity),

which is five orders of magnitude lower than that predicted by a
standard thin disk accretion at the Bondi accretion rate
(Baganoff et al. 2003). We now understand that an advec-
tion-dominated accretion flow scenario works for Sgr Aå, and
that the low luminosity is due to the combination of the low
radiative efficiency and the mass loss via outflow (Yuan et al.
2003, 2012; Narayan et al. 2012; Li et al. 2013; Wang
et al. 2013; Yuan & Narayan 2014). Sgr Aå is usually in a
quiescent state, and occasionally shows rapid flares (on
timescales 1~ hr), most significantly in X-ray (Baganoff
et al. 2001) and near-infrared (NIR; Genzel et al. 2003; Ghez
et al. 2004). The flare rate is roughly once per day in X-ray and
more frequently in NIR.

Theoretical interpretations of the flares include the electron
acceleration by, e.g., shocks, magnetic reconnection, or
turbulence, produced in either an accretion flow (e.g., Yuan
et al. 2004; Eckart et al. 2006; Dodds-Eden et al. 2009, 2010;
Yusef-Zadeh et al. 2009; Chan et al. 2015) or in an assumed jet
(e.g., Markoff et al. 2001). The other scenarios in terms of the
flaring cause are transient features in the accretion flow, such as
accretion instability (Tagger & Melia 2006), orbiting hot spot
(Broderick & Loeb 2005), expanding plasma blob (Eckart et al.

2006; Yusef-Zadeh et al. 2006, 2009; Trap et al. 2011), and
tidal disruption of asteroids (Zubovas et al. 2012). However,
the nature of the flares is still under debate.
Before 2012, only about a dozen X-ray flares were detected

(e.g., Baganoff et al. 2001; Porquet et al. 2003; Bélanger
et al. 2005; Eckart et al. 2006; Aharonian et al. 2008; Marrone
et al. 2008; Porquet et al. 2008; Yusef-Zadeh et al. 2008;
Degenaar et al. 2013). Thanks to the Chandra X-ray Visionary
Project on Sgr Aå (hereafter XVP9) in 2012, a total of 39 flares
have been added (Neilsen et al. 2013). This substantially
increased sample size of flares has enabled the statistical study
of the properties. Neilsen et al. (2013) first analyzed the
distributions of the fluences, durations, peak count rates (CRs),
and luminosities of the XVP detected flares. Neilsen et al.
(2015) further investigated the flux distribution of the XVP
X-ray light curves taking into account the Possion fluctuations
of the quiescent emission and the flare flux statistics.
In this work we advance the statistical analysis of the XVP

light curve by simultaneously using its flux distribution and
structure function (SF). We generate X-ray light curves through
Monte Carlo realizations of both the quiescent and flare
contributions. The realization of flares assumes power-law
models for their fluence function and width-fluence depen-
dence. The parameters of these power laws are in turn
constrained by comparing the simulated data with the observed
one, using the Markov Chain Monte Carlo (MCMC) approach.
The major motivation of the statistical analysis is to

determine whether the self-organized criticality (SOC) model
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can explain Sgr Aå X-ray flares, and if so to probe the
dimensionality of the process leading to the flares. We compare
our constrained power-law indexes (i.e., the power-law indexes
for the fluence distribution and the duration-fluence correlation)
with the expectation of the SOC theory, which describes a class
of dynamical systems with nonlinear energy dissipation that is
slowly and continuously driven toward a critical value of an
instability threshold (Katz 1986; Bak et al. 1987; Aschwanden
2011; see the Appendix for a brief introduction to SOC and the
relevant statistical method to be used in the present work). The
energy dissipation driven by magnetic reconnection is believed
to be in an SOC system, such as solar flares (Lu &
Hamilton 1991), possibly the X-ray flares of γ-ray bursts
(GRBs) and black holes of various scales (Wang & Dai 2013;
Wang et al. 2015). An SOC system experiences scale-free
power-law distributions of various event parameters, such as
the total energy (or equivalently the fluence), the peak energy
dissipation rate, the time duration, and the flux (or equivalently
the CR) of events. These statistical properties are related to the
geometric dimension of the system that drives the events, and
can thus be used to diagnose their physical nature (Aschwan-
den 2012, 2014). While the statistical analysis of solar flares
suggests a spatial dimension S = 3, consistent with the
complex magnetic structure observed in active regions on the
Sun (e.g., Priest & Forbes 2000), the X-ray flares of GRBs
favor S = 1 (Wang & Dai 2013). Thus, it is argued that the
X-ray flares occur in the jets of GRBs where the magnetic field
configuration tends to be poloidal and thus one-dimensional
(Wang & Dai 2013). Wang et al. (2015) further claim S = 3
from an analysis of the X-ray flares of Sgr Aå, Swift J1644+57,
and M87. However, this analysis is very crude in the sense that
the correlation among different bins of the cumulative
distribution are not properly addressed, that artificial cuts of
the fitting range of the data are adopted, and that the used flare
sample is strongly biased and incomplete at the detection limit
(Wang 2004). All these issues are handled in the present work.

The rest of this paper is organized as follows. The
observational data and the statistical method adopted are
described in Section 2. We present the fitting results in
Section 3, and discuss the physical implication of the results in
Section 4. Finally we conclude this work in Section 5.

2. DATA AND METHODOLOGY

2.1. Observations

We use the data of the 2012 Chandra XVP campaign, which
consists of 38 Chandra ACIS-S/HETGS observations of Sgr
Aå with a total exposure time of 3 million seconds (Ms)
between 2012 February 6 and October 29. The 2–8 keV light
curve is extracted in 300 s bins including both photons of the
0th order and the 1st diffraction orders. The 0th order events
are extracted from a circle region with a radius of 1. 25 , while
the 1st order events are extracted from a 2. 5 rectangular
region (Neilsen et al. 2013). For more details of the XVP
campaign and data reduction, we refer the readers to Neilsen
et al. (2013).

2.2. Synthetic Light Curve

The X-ray light curve can be decomposed into the quiescent
and flare components. The quiescent emission is assumed to be
steady with a CR r. We model the flare component as a sum of
Gaussian functions.10 Then the model light curve is
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where Ei, is , and im are the fluence, width, and peak location of
the ith flare, [ ]k is the integer part of κ and it presents the total
number of flares. We use a Monte Carlo method to generate the
model light curve, which accounts for the Possion fluctuations
of photon counting. The differential flare fluence function is
assumed to be a power-law form,

dN dE
E E E E,

0, otherwise
, 2min maxE

( )
⎧⎨⎩

 
µ

a-

where the lower limit of the fluence E 1 ctsmin = is well below
the detectable flare fluence in Neilsen et al. (2013), and the
upper limit E 1000 ctsmax = is slightly larger than that of the
brightest flare (Nowak et al. 2012). Given Ea and κ, the
fluences of the model flares can be easily sampled.
As shown in Neilsen et al. (2013), there is a clear correlation

between the flare fluence E and duration T (defined as four
times the Gaussian width σ). We characterize this correlation
with a log-normal distribution N log ,i ET( )s s , where ETs is the
Gaussian dispersion and a power-law relation between is and Ei

as

A
E

100
3i

i
ET

( )⎜ ⎟⎛
⎝

⎞
⎠s =
a

where A is the normalization constant and ETa is the power-law
index.11 The intrinsic scattering of the flare widths around the
power-law relation is estimated to be 0.25ETs = for the
detected sample (Q. Yuan et al. 2015, in preparation). The peak
time im of each flare is generated randomly in the observational
periods. The discrete light curve is then generated in 300 s bins,
resulting in M = 9964 bins for the total exposure of the data.
The average CRs are calculated in each bin of the simulated
light curve. In total we will have five parameters to describe the
synthetic light curve, namely the Poisson background r, the
power-law index of the fluence distribution Ea , the total flare
number κ, the duration normalization A, and the fluence-
duration correlation slope ETa .
Finally we correct the pileup effect of the simulated light

curve by assuming the 1st-order CRs a constant fraction, 52%,
of the incident rate (Nowak et al. 2012, see also Neilsen et al.
2013, 2015). For all the simulated CRs, the pileup correction is
less than 20%.
Figure 1 shows a representative simulated light curve (blue),

compared with the observational one (red) with the observing
gaps removed.

10 This modeling is used as the 1st-order approximation to account for the
correlation among photons from individual flares, although some bright ones
do show significant asymmetric shapes (Baganoff et al. 2001; Nowak
et al. 2012), and/or substructures (Barrière et al. 2014).

11 In this work we use Xa to represent the power-law index of the distribution
of variable X (specifically dN dX X Xµ a- ), and XYa to represent the
correlation power-law index between X and Y (specifically Y X XYµ a ).
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2.3. Statistical Comparison

The synthetic light curve cannot be directly compared to the
observational one due to the lack of bin-to-bin correspondence
between the two. We need a statistical way to make the
comparison. A “first” order statistic is the CR distribution,
which reveals the overall magnitude of the variabilities.
However, as mentioned above (also noted in Neilsen et al.
2015), the CR distribution contains no information about the
flare flux correlation among adjacent bins. This correlation can
be independently accounted for by the use of the auto-
correlation function, or equivalently the SF for a stationary
process (Simonetti et al. 1985; Emmanoulopoulos et al. 2010).
We jointly fit the CR distribution and the SF to determine the
model parameters.

2.3.1. CR Distribution

With the 300 s bins both for the simulated and observed data,
the binning results in M = 9964 data points for the total
exposure window. We construct the CR distribution of the data
logarithmically and follow Knuth (2006; see also Witzel
et al. 2012) to determine the optimal bin number of the
histogram. Considering the histogram as a piecewise-constant
model, the relative logarithmic posterior probability (RLPP) for
the bin number m, given M data points, is

m M m
m

m

M
m

n

RLPP log log
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where nl is the histogram value of the lth bin, and x( )G is the
Gamma function. Then the optimal number of bins m̄ can be
derived through maximizing the above RLPP. For the
observational light curve of Sgr Aå, we find m 14~ .
With the above binning, we can now construct 2c statistics

for the CR distribution analysis:

n n C n n , 5T
CR
2

obs sim
1

obs sim( ) ( ) ( )c = - --

where the symbol T stands for the transpose of the matrix
(vector), nobs and nsim are the vectors of the CR histogram
values of the observed and simulated data, respectively. The
covariance matrix C is calculated according to N Monte Carlo
realizations

C i j
N

n n n n,
1

1
, 6

k

N

i
k

i j
k

j
1
( )( )( ) ¯ ¯ ( )å=

-
- -

=

where ni¯ is the mean value of the ith bin of N realizations. The
covariance matrix is involved here to account for the error
correlations among different bins due to the correlated flare
CRs (Brockwell & Davis 2010, and see discussions of the error
estimation in Norberg et al. 2009). If there is no correlation
between two histogram bins, C i j, ij i

2( ) d s= , Equation (5) is
reduced to the standard definition of 2c . The exact value of N,
as long as it is sufficiently large, has little effect on the
calculation of the covariance matrix. In this work we
adopt N = 500.

Figure 1. Upper panel: the light curve (with the observing gaps removed) from the XVP observations (red), compared with a representative one from the simulations
(blue) using the best-fit parameters of model I shown in Table 1 (see below). Lower panel: zoomed-in light curve of a time window indicated by the short horizontal
bar in the upper panel.
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2.3.2. Structure Function

Following Emmanoulopoulos et al. (2010) we define the
normalized SF as

V
R t R t

S
, 7

2

2
( )

[ ( ) ( )]
( )t

t
=

+ -

where R(t) is the CR as a function of time t, τ is the time lag, áñ
represents the average over the whole time range of the light
curve, and S2 is the variance of the CR

S R t R t . 82 2( ) ( ) ( )⎡⎣ ⎤⎦= -

This normalized SF is equivalent to the auto-correlation
function as long as the time series is stationary, i.e.,
R t R t const.( ) ( )t= + = (Emmanoulopoulos et al. 2010).
The SF is especially suitable for the analysis of the data that are
unequally sampled with large observational gaps, as is the
case here.

Similar to the CR distribution, we build 2c statistics to
compare the observed and simulated SFs quantitatively. Apart
from the correlation among various SFs, which needs to be
taken into account more seriously compared with the CR
distribution, another issue for the standard definition of the 2c
is that the random variable (the SF here) needs to be Gaussian.
As shown in Emmanoulopoulos et al. (2010), the logarithm of
the SF, instead of the SF itself, is approximately Gaussian.12

The 2c statistic for the SF is thus defined as

V V C V Vlog log log log , 9T
SF
2

obs sim SF
1

obs sim( ) ( ) ( )c = - --

where the covariance matrix CSF can be calculated the same
way as Equation (6). The number of SF bins for the fitting
procedure is chosen to be the same as that of the CR bins, i.e.,
m = 14. Note that the SF becomes a featureless plateau when
the time lag is larger than the largest timescale of the flares.
Correspondingly, the SF for the 14 bins are calculated between
300 s and 3 × 104 s.13 By minimizing 2

CR
2

SF
2c c c= + , we

test our model and constrain the model parameters.

2.3.3. Model Fitting

We minimize 2
CR
2

SF
2c c c= + , using the MCMC method.

It maps out the full posterior probability distributions and
correlations of the model parameters. The MCMC code is
adapted from the public CosmoMC code (Lewis & Bri-
dle 2002). The Metropolis–Hastings algorithm (Metropolis
et al. 1953; Hastings 1970), a propose-and-accept process in
which the acceptance or rejection of a proposed point in the
parameter space depends on the probability ratio between this
point and the previous one, is adopted to generate the Markov
chains.

3. RESULTS

3.1. Joint Fitting

The parameter ETs in the fittings is chosen to be 0.25,
according to Q. Yuan et al. (2015, in preparation). Figure 2
shows the best-fit results and 1s bands of the CR (upper panel)
and the SF (lower panel), compared with the observations. The
CR distribution exhibits an exponential distribution, which
reflects the Possion background, and a power-law tail, which
represents the flares. The SF increases with τ and reaches a
plateau of 5 103t ~ ´ s, which corresponds to the largest
duration of the flares. The profile with a rising trend clearly
shows the timescale of the flares of the light curve. When the
time lag τ is much longer than the largest timescale of the
variabilities, the normalized SF asymptotically approaches 2,
i.e., the plateau in Figure 2. It should be noted that the SF can
be biased when applied to irregularly sampled light curves. In
particular, the SF can show spurious breaks at t T10 1D ~ D- ,
where TD is the total exposure time of the light curve
(Emmanoulopoulos et al. 2010). However, the break seen here
is at a much shorter timescale ( T10 3~ D- ), and is consistent

Figure 2. Upper panel: the CR distribution of the X-ray light curves of Sgr Aå.
The red circles are for the observed light curve, and blue dots are the best-fit
model results. The bands show the fitting 1s ranges of the CR distribution for
the best-fit model according to the MCMC chains. Lower panel: the SF for the
observed data and the simulations for the same parameter set.

12 Although Emmanoulopoulos et al. (2010) show that the logarithm of the SF
is only approximately Gaussian below a false break timescale related with its
power spectrum, our Monte Carlo simulations suggest that Vlog ( )t is indeed
distributed roughly normally for the timescales considered here in spite of its
ignorance of the location of the false break.
13 First, the SFs for the larger time delay τ will show remarkable fluctuations,
and thus can be impossibly used for the fitting. second, we calculate the SFs
with the observing gaps removed, which could introduce an artificial dip in the
SFs when 8 104t ´ s, corresponding to the typical timescale of the
observing windows for the XVP data. However, the observing gaps show no
significant effect on the SFs with 3 104t ´ s, the fitting range
considered here.
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with break timescales seen previously in both the NIR (Meyer
et al. 2009; Witzel et al. 2012) and sub-millimeter (Dexter
et al. 2014). Both of them suggest that the turnover time is
likely an intrinsic characteristic timescale for the X-ray flares.

Figure 3 shows the one- and two-dimensional (1D and 2D)
probability distributions of the parameters. The mean values
and the 1s uncertainties of the parameters are listed in Table 1.
The fitting results suggest a fluence distribution power-law
index 1.65 0.17Ea =  , and the less constrained fluence-
duration correlation index 0.55ETa < (95% confidence
limit). The correlations between some of the parameters can
be clearly seen in Figure 3. There is a strong correlation
between the total number of flares κ and the fluence
distribution index Ea . It is easy to understand that a harder
fluence distribution will naturally correspond to a smaller
number of flares in order not to over-produce the number of
photons. Also the anti-correlation between Ea (or κ) and r is
again due to the constraint of the total number of photon
counts.

To judge the “goodness of fit” of the best-fit model, we use
the bootstrapping method to estimate the confidence level.
Based on the best-fit model parameter set as shown in Table 1,
we generate 2000 realizations of the light curves and calculate
the 2c values for each realization using the same method
described in Section 2.3. The distribution of the 2c values is
shown in Figure 4. The number fraction of realizations with 2c
values smaller than that of the observational one, 21obs

2c = , is
estimated to be 89.7%, indicating that the observed light curve
is well characterized by the best-fit model.

Our preliminary re-analysis of the light curve indicates that
the existing sample of flares may be biased against the
detection of long duration ones. This bias can significantly
affect the measurement of ETs and potentially other parameters
as well. We have thus tested this latter sensitivity by fixing ETs
to different values and found that the estimates of other
parameters are not significantly altered (well within their

uncertainties). The analysis, however, may be sensitive to the
assumed specific shape of individual flares. We will address
these potential higher-order complications in a follow-up paper.

Figure 3. 1D and 2D probability distributions of the fitting parameters. The contours in the 2D plots are for confidence levels 68% and 95% from inside to outside,
respectively.

Table 1
Best-fit Model Parameters with the MCMC Method

r 10 cts s3 1( )- -
Ea log( )k Alog( ) ETa 2cn

5.90 ± 0.14 1.65
± 0.17

2.41
± 0.22

2.99 0.12 0.55< 0.9

Note. The errors are all 1s (or 68%) confidence limit except for ETa (for the
one tail 95% confidence).

Figure 4. Distribution of 2c values of 2000 realizations of the light curves with
the best-fit model parameters. The shaded region corresponds to a percentile of
89.7% for 2

obs
2c c< .
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3.2. Comparison with Previous Works

Neilsen et al. (2013) studied the statistical properties of the
fluences, peak rates, durations, and luminosities of the 39 flares
detected during the 2012 Chandra XVP. It was found that
the distributions of the durations and luminosities can be
well described by power-law functions, with indices

0.9 0.2Ta =  and 1.9L 0.3
0.4a = -

+ , respectively. The power-
law fittings to the fluence and peak rate distributions give

1.5 0.2Ea =  and 1.9P 0.4
0.5a = -

+ . However, the fittings can be
significantly improved by assuming cut-off power-law func-
tions (Neilsen et al. 2013). Our result of Ea is consistent with
that derived in Neilsen et al. (2013), even though only the
detected sample was employed in the latter. Based on the
Gaussian flare profile assumption, the slopes of the duration
and peak rate distributions can be derived according to our
fitting results,14 which are 2.1T a and 1.7 2.4P a ,
respectively. The peak rate distribution is consistent with that
of Neilsen et al. (2013), but the duration distribution is
different. As mentioned above, the fluence–duration correlation
derived in our work is also different from that of the detected
sample. Possible reasons for these discrepancies include the
incompleteness of the sample, and the profiles of the flares.
Neilsen et al. (2015) showed that the flux distribution can be
decomposed into two components, a steady Poisson back-
ground and a variable flare component. The X-ray flares excess
follows a power-law process with 1.92F 0.02

0.03a = -
+ and the

Poisson background rate is 5.24 0.08 10 3( ) ´ - cts s−1. The
background rate derived here 5.90 0.14 10 3( ) ´ - cts s−1 is
slightly larger than that derived in Neilsen et al. (2015),
possibly due to the different methods adopted. Although not
shown explicitly, our result of Figure 2 gives roughly

2.2,Fa ~ which is consistent with that of Neilsen et al.
(2015). Wang et al. (2015) also analyzed the detected sample
of Neilsen et al. (2013), with a different selection of the
fitting data ranges, and found that 1.8 0.6Ea =  and

1.9 0.5Ta =  .15 Within the large uncertainties, their results
are consistent with what we obtain.

4. IMPLICATIONS ON THE NATURE OF THE FLARES

4.1. Confronting the Statistical Results with SOC Theory

We find that both the flare fluence distribution and the
correlation between the duration and the fluence can be
described by power laws, which is consistent with the
prediction of the fractal-diffusive SOC theory (Aschwanden
2011, 2012, 2014). The SOC theory further predicts that the
power-law indices will depend on the Euclidean space
dimension S of the system to produce flares. The predicted
power-law indices are 1.5E

tha » and 0.5ET
tha » , respectively,

for S = 3, the classical diffusion parameter 1b = , and the
mean fractal dimension D S1 2S ( )= + (see the Appendix for
more details). These values may vary in a range for different
assumed values of β and DS. For example, Ea can range from
1.4 to 1.7 for the fractal dimension D1 3S 3 = . Our results

of Ea and ETa are actually in good agreement with the
theoretical expectation with S = 3. The predicted indices of the
duration and peak rate distributions are 2.0T

tha » and
1.7P

tha » . As a comparison, our induced values are 2.1T a
and 1.7 2.4P a , respectively. There are potential discre-
pancies of these two distributions. Since the determination of
the peak rate depends on the assumption of the flare profile, as
well as the precise measurement of the flare duration, there
should be relatively large uncertainty of the peak CR
distribution. As shown in Nowak et al. (2012), the profile, at
least for the bright ones, is indeed asymmetric rather than
Gaussian. Therefore, the integral property (fluence) should be
more reliably measured and more suitable to be used to
compare with the theoretical model expectation.

4.2. Episodic Ejection of Plasma Blobs as Origin of Flares?

Two main conclusions can thus be obtained from the above
analysis. First, the power-law distributions of the fluences,
durations, and their correlation, suggest that the flares of Sgr Aå

can be explained in the fractal-diffusive SOC framework.
Second, the inferred space dimension responsible for the flares
is S = 3. Both results are similar to the solar flares, which thus
implies that the X-ray flares of Sgr Aå are likely driven by the
similar physical mechanism as that of the solar flares. By
analogy with the coronal mass ejections and their solar flares,
Yuan et al. (2009) have proposed a magnetic reconnection
model for the episodic ejections and the production of flares16

from the accretion flow of Sgr Aå. In the following, we briefly
review the key points of the model.
The structure of the accretion flow of Sgr Aå is quite similar

to the atmosphere of the Sun, i.e., a dense disk enveloped by a
tenuous corona, as shown by the magneto-hydrodynamic
simulations (e.g., Figure 4 in Yuan & Narayan 2014). The
magnetic loops emerge into the disk corona due to the Parker
instability. The configuration of the coronal magnetic field
emerging from the accretion flow is controlled by the
convective turbulence motion of the plasma in the disk. Since
the foot points of the field lines are anchored in the accretion
flow, which is turbulent and differentially rotating, a swamp of
small-scale magnetic reconnection sets in, which redistributes
the helicity and stores most of it in a flux rope. The turbulent
processes in the accretion flow thus continuously build up
magnetic stress and helicity. When a threshold is reached, e.g.,
when the current density inside the current sheet below the flux
rope is strong enough, microscopic instabilities such as the
two-streaming instability would be triggered, resulting in
anomalous resistivity and fast magnetic reconnection inside
the current sheet (Chen 2011). The equilibrium of the flux rope
breaks down with accompanied dissipation of magnetic energy
in a catastrophic manner, powering the observed flare. This is
the so-called much-awaited SOC state which means that a
small perturbation, owing to turbulence motion in accretion
flow and subsequent magnetic reconnection, will trigger an
avalanche-like chain reaction of any size in the system once the
system self-organizes to a critical state.

5. CONCLUSIONS AND DISCUSSION

We present a statistical analysis to the Chandra 2–8 keV
X-ray light curve of Sgr Aå from the 3 Ms XVP campaign.

14 For the duration distribution, since T E ETµ a , we have
dN

dT

dN

dE
E E TdE

dT
1 1 1E ET E ET· · ( )= µ µa a a a- - + - - - , and thus

1 1T E ET( )a a a= + - . For the peak CR distribution,
P E T E E E1ET ETµ µ =a a- , then 1P E ET ET( ) ( )a a a a= - - .
15 Concerning their analysis of Sgr Aå, however, the flares sample is not
corrected for the incompleteness, as well as the correlation of the uncertainties
among different bins of the cumulative distributions are not properly addressed
in the fittings.

16 The flares and episodic ejections are physically associated with each other,
both for the Sun and the black hole accretion flow.
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A Monte Carlo simulation method is adopted to generate the
model light curves, taking into account for the Possion
fluctuations of both the photon counts and the number of
flares. We then fit the CR distribution and the SF of the light
curves jointly to constrain the model parameters, via an MCMC
method. We found that the X-ray emission of Sgr Aå can be
well modeled by two distinct components: a steady quiescent
emission around the Bondi radius with a CR of
5.90 0.14 10 cts s3 1( ) ´ - - , and a flaring emission with a
power-law fluence distribution dN dE E Eµ a- with

1.65 0.17Ea =  . The duration-fluence correlation can also
be modeled by a power-law form T E ETµ a with 0.55ETa < .

These statistical properties are consistent with the theoretical
predications of the SOC system with the Euclid spatial
dimension S = 3, same as that for solar flares (Aschwanden
2012, 2014). Our analysis, therefore, indicates that the X-ray
flares of Sgr Aå are possibly driven by the same physical
mechanism as that of the solar flares, i.e., magnetic reconnec-
tion (Shibata & Magara 2011). This idea is further supported by
the recent development of magneto-hydrodynamic simulations
which lead to the consensus that the accretion flow in Sgr Aå is
enveloped by a tenuous corona above the dense disc (e.g.,
Yuan & Narayan 2014), similar to the atmosphere of the Sun.
The three-dimensional geometry of the energy dissipation
domain further suggests that the X-ray flaring of Sgr Aå occurs
in the surface of the accretion flow due to the less-ordered
magnetic field structure embedded in it compared with that in
the relativistic astrophysical jets (e.g., the GRBs; Wang &
Dai 2013).

The flares of Sgr Aå have also been detected in the NIR band
(e.g., Genzel et al. 2003; Ghez et al. 2004). Dodds-Eden et al.
(2011) and Witzel et al. (2012) analyzed the NIR flare data and
found that the NIR flux distribution can also be described by a
power-law form. However, the power-law indices obtained,
which are 2.1 0.6-  (Dodds-Eden et al. 2011) and

4.2 0.1-  (Witzel et al. 2012), are different from each other.
The cause for the discrepancy between these two results is
unclear, and may be related to the subtractions of the stellar
light. The former is roughly consistent with that of the X-ray
flares (e.g., Neilsen et al. 2015, as well as our results in the
context of the SOC framework with S = 3). If this is the case,
then the NIR flares are expected to have the same physical
origin as the X-ray flares, which is also supported by the results
that NIR and X-ray flares occur simultaneously when there are
coordinated observations at two wavebands (e.g., Dodds-Eden
et al. 2009). Otherwise, it may suggest different radiation
mechanisms between the NIR and X-ray flares which lead to
the differences in the fractal dimension (Aschwanden 2011) or
even different physical origins (Chan et al. 2015).

By analogy with solar flares, the multi-waveband flares of
Sgr Aå in X-ray, probably NIR, and less prominent sub-
millimeter and radio, are likely associated with the ejection
of plasmoids, both of which are the radiative manifestation
of the common catastrophic phenomena (Yusef-Zadeh
et al. 2006, 2008; Brinkerink et al. 2015). Such a result would
be useful for understanding the origins of the flares and
episodic jets in various black holes in general.

Mineshige et al. (1994b; see also Negoro et al. 1995;
Takeuchi et al. 1995) studied the statistical properties of the
X-ray fluctuations in Cygnus X-1, a black hole X-ray binary.
They found that the X-ray fluctuations showed much steeper
(or even exponential) distributions compared with those of

solar flares. They argued that the fluctuations should also
follow an SOC process. A mass diffusion process was invoked
in their works to explain the discrepancy of the distributions.
But the X-ray fluctuations they discussed likely have a different
physical origin compared with what we have discussed in the
present paper. Thus the trigger mechanism of SOC is also
different.
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APPENDIX
SOC SYSTEM

The theoretical concept of SOC, proposed first by Katz
(1986) and Bak et al. (1987) independently, describes a class of
nonlinear dissipative dynamical systems that are slowly and
continuously driven toward a critical value of an instability
threshold, producing scale-free, fractal-diffusive, and intermit-
tent avalanches (Charbonneau et al. 2001; Aschwanden 2011).
The classical example of the SOC system is a sandpile (Bak
et al. 1987). If one continuously drops the sand grains (driving
force) to the same place, a conical sandpile will grow in a
steady way until the surface shape reaches a critical slope,
beyond which further addition of sand rapidly leads to
catastrophic avalanches of the sandpile. The critical slope is
primarily determined by the friction threshold between adjacent
grains. Such a threshold is crucial since it allows the existence
of multiple metastable states across the system. The continuous
slow addition of sand will produce small or large avalanches
with sizes independent of the input rate of sand. The critical
behavior of the sandpile appears naturally as a consequence of
the slow addition of sand without fine tuning of the addition
rate. It is in this sense that the system is self-organized to
criticality (Charbonneau et al. 2001; Aschwanden 2011). The
continuous energy input (addition of sand) and nonlinear
energy dissipation (avalanches due to the complicated interac-
tions between the colliding sand grains) are two key points to
determine whether a system is in an SOC state.
A universal property of the SOC system is that there is no

preferred scale of the release of energy. The scale-free power-
law distributions of various event parameters, which actually
become the hallmarks of SOC systems, are expected. The
ubiquitousness of power-law distributions in a wide range of
physical systems, e.g., earthquakes, cloud formation, solar
flares, and widely in astrophysics, suggests that SOC is a

17 http://www.sgra-star.com/collaboration-members
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common law of nature. The SOC theory has been widely
applied in geophysics (Turcotte 1999), solar physics (e.g.,
Charbonneau et al. 2001), and astrophysics (e.g., Mineshige
et al. 1994a; Kawaguchi et al. 2000; Aschwanden 2011;
Kunjaya et al. 2011).

The slope of the power-law form depends on how the
subsystem self-organizes to the critical state. An analytic
description was provided based on a fractal-diffusive avalanche
model (Aschwanden 2012). The SOC state ensures that the
entire system is close to the instability threshold, and the
avalanches can develop in any direction once triggered. The
propagation of the unstable nodes can thus be modeled with a
random walk in an S-dimensional space (Aschwanden 2012). A
statistical correlation between the spatial length scale L and
time duration of the avalanche T for a diffusive random walk is
predicted to be L T 2µ b , where β is a diffusion parameter
( 1b = corresponds to the classical diffusion). With the scale-
free probability conjection dN dL L Sµ - , which means that
the critical states are homegeneously distributed across the
entire system, the occurrence frequency distributions of flare
duration, flux, peak flux, and total energy can be obtained in the
fractal-diffusive avalanche model (Aschwanden 2012). The
indices of the total energy (fluence) E

tha , duration T
tha , peak

luminosity (or peak CR in this work) P
tha , and flux (or CR) F

tha
distributions are derived as (Aschwanden 2012, 2014)

S

D
1

1

2
, 10E

th

S
( )a
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-

where S is the Euclidean space dimension, DS is the fractal
Hausdorff dimension, which lies between 1 and S. The fractal-
diffusive SOC theory also predicts the scaling relations between
various flare parameters. The correlation slope between the
total energy E and duration T is (Aschwanden 2012, 2014)

D

2

2
. 14ET

th

S
( )a

b
=

+

For the classical diffusion 1( )b = and an estimated mean
fractal dimension of D S 1 2S ( )» + , we have 1.5E

tha = ,
2.0T

tha = , 1.7P
tha = , 2.0F

tha = , and 0.5ET
tha = for S = 3.
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