95,852 research outputs found
Chiral geometry and rotational structure for Cs in the projected shell model
The projected shell model with configuration mixing for nuclear chirality is
developed and applied to the observed rotational bands in the chiral nucleus
Cs. For the chiral bands, the energy spectra and electromagnetic
transition probabilities are well reproduced. The chiral geometry illustrated
in the and the is confirmed to be stable against the
configuration mixing. The other rotational bands are also described in the same
framework
Orbital-resolved vortex core states in FeSe Superconductors: calculation based on a three-orbital model
We study electronic structure of vortex core states of FeSe superconductors
based on a t three-orbital model by solving the Bogoliubov-de
Gennes(BdG) equation self-consistently. The orbital-resolved vortex core states
of different pairing symmetries manifest themselves as distinguishable
structures due to different quasi-particle wavefunctions. The obtained vortices
are classified in terms of the invariant subgroups of the symmetry group of the
mean-field Hamiltonian in the presence of magnetic field. Isotropic and
anisotropic wave vortices have symmetry for each orbital, whereas
wave vortices show symmetry for orbitals
and symmetry for orbital. In the case of
wave vortices, hybridized-pairing between and orbitals gives
rise to a relative phase difference in terms of gauge transformed pairing order
parameters between and orbitals, which is essentially
caused by a transformation of co-representation of and
subgroup. The calculated local density of states(LDOS) of wave
vortices show qualitatively similar pattern with experiment results. The phase
difference of between and orbital-resolved
wave vortices can be verified by further experiment observation
Tungsten fibre reinforced Zr-based bulk metallic glass composites
A Zr-based bulk metallic glass (BMG) alloy with the composition (Zr55Al10Ni5Cu30)98.5Si1.5 was used as the base material to form BMG composites. Tungsten fiber reinforced BMG composites were successfully fabricated by pressure metal infiltration technique, with the volume fraction of the tungsten fiber ranging from 10% to 70%. Microstructure and mechanical properties of the BMG composites were investigated. Tungsten reinforcement significantly increased the material’s ductility by changing the compressive failure mode from single shear band propagation to multiple shear bands propagation, and transferring stress from matrix to tungsten fibers
Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method
An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer solution [5 mmol/L p-toluensulfonic acid (p-TSA) + 20 mmol/L bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (bis¿tris) + 100 ¿mol/L sodium ethylenediaminetetraacetic (EDTA-2Na)] was used to improve the sensitivity of detection. The average spiked recoveries for the ten organic acids ranged from 82.9 to 127.9% with relative standard deviations of 1.44¿4.71%. The linear ranges of determination were from 15 to 1,000 mg/L with correlation coefficients of 0.9995¿0.9999. The metabolism of organic acids in cider, and the effect of nutrients including diammonium phosphate (DAP), thiamine, biotin, niacinamide and pantothenic acid on their metabolism, were studied using this method of analysis. We found that before cider brewing, additions of 200 mg/L DAP and 0.3 mg/L thiamine to apple juice concentrate results in a high quality cider
- …