66,388 research outputs found
EPR spectrum via entangled states for an Exchange-Coupled Dimer of Single-Molecule Magnets
Multi-high-frequency electron paramagnetic resonance(EPR) spectrum for a
supermolecular dimer of single-molecule magnets recently reported
[S. Hill, R. S. Edwards, N. Aliaga-Alcalde and G. Christou(HEAC), Science 302,
1015 (2003)] is studied in terms of the perturbation method in which the
high-order corrections to the level splittings of degenerate states are
included. It is shown that the corresponding eigenvectors are composed of
entangled states of two molecules. The EPR-peak positions are calculated in
terms of the eigenstates at various frequencies.
From the best fit of theoretical level splittings with the measured values we
obtain the anisotropy constant and exchange coupling which are in agreement
with the corresponding values of experimental observation. Our study confirms
the prediction of HEAC that the two units within the dimer are coupled
quantum mechanically by the antiferromagnetic exchange interaction and the
supermolecular dimer behaviors in analogy with artificially fabricated quantum
dots.Comment: 16 pages,2 figures, 2 table
Game Theory Meets Network Security: A Tutorial at ACM CCS
The increasingly pervasive connectivity of today's information systems brings
up new challenges to security. Traditional security has accomplished a long way
toward protecting well-defined goals such as confidentiality, integrity,
availability, and authenticity. However, with the growing sophistication of the
attacks and the complexity of the system, the protection using traditional
methods could be cost-prohibitive. A new perspective and a new theoretical
foundation are needed to understand security from a strategic and
decision-making perspective. Game theory provides a natural framework to
capture the adversarial and defensive interactions between an attacker and a
defender. It provides a quantitative assessment of security, prediction of
security outcomes, and a mechanism design tool that can enable
security-by-design and reverse the attacker's advantage. This tutorial provides
an overview of diverse methodologies from game theory that includes games of
incomplete information, dynamic games, mechanism design theory to offer a
modern theoretic underpinning of a science of cybersecurity. The tutorial will
also discuss open problems and research challenges that the CCS community can
address and contribute with an objective to build a multidisciplinary bridge
between cybersecurity, economics, game and decision theory
The nature of symmetric instability and its similarity to convective and inertial instability
It is shown that there exists a local similarity among SI (Symmetric Instability), BI (Buoyancy or Convective Instability), and II (Inertial Instability) even for fully nonlinear viscous motion. The most unstable slope angles for SI and Moist SI motions are analyzed based on parcel energetics. These considerations also suggest qualitatively that CSI (Conditional SI) circulations will be slantwise and lie between the moist most unstable slope and dry least stable slope of the basic state
High-dimensional Z' phenomenology at hadron colliders
We study the phenomenology of a Z'-boson field coupled to hypercharge. The Z'
propagator has a non-trivial K\"all\'en-Lehmann spectral density due to the
mixing with a higher dimensional inert vector field. As a consequence detection
possibilities at hadron colliders are reduced. We determine the range of
parameters where this field can be studied at the Tevatron and the LHC through
its production cross section via the Drell-Yan mechanism.Comment: 9 pages, 8 figures; version accepted by Phys.Rev.
Recommended from our members
Investigate the impacts of assimilating satellite rainfall estimates on rainstorm forecast over southwest United States
Using the MM5-4DVAR system, a monsoon rainstorm case over southern Arizona (5-6 August 2002) was investigated for the influence of assimilating satellite rainfall estimates on precipitation forecasts. A set of numerical experiments was conducted with multiple configurations including using 20-km or 30-km grid distances and none or 3-h or 6-h assimilation time windows. Results show that satellite rainfall assimilation can improve the rainstorm-forecasting pattern and amount to some extent. The minimization procedure of 4DVAR is sensitive to model spatial resolution and the assimilation time window. The 3-h assimilation window with hourly rainfall data works well for the 6-h forecast, and for 12-h or longer forecasts, a 6-h assimilation window will be requested. Copyright 2004 by the American Geophysical Union
Recommended from our members
Impact of assimilating rainfall derived from radar and satellites on rainstorm forecasts over the Southwestern United States
The impact of assimilating rainfall derived from radar and satellites on rainstorm forecasts over the Southwestern United States is discussed. The major advantage of 4DVAR is the use of full model dynamics and physics to assimilate multiple-time-level observation data. Rainfall assimilation via 4DVAR is used to improve the moisture distributions in model IC. It is found that by using 4DVAR to generate model IC, the precipitation intensity and patterns can be improved substantially over the mid-latitude plain regions
Recommended from our members
Influence of assimilating rainfall derived from WSR-88D radar on the rainstorm forecasts over the southwestern United States
In this study, the impact of rainfall assimilation on the forecasts of convective rainfall over the mountainous areas in the southwestern United States is investigated. The rainfall is derived from the U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) radar network, and the fifth-generation Mesoscale Model (MM5) Four-Dimensional Variational (4DVAR) system is employed in the study. We evaluate the rainfall assimilation skill through two rainstorm events (5-6 August and 11-12 September 2002) that occurred over the southwestern United States in 2002. A series of experiments for the two cases is conducted. The results show that the minimization process in the 4DVAR is sensitive to the length of assimilation window and error variance in the observation data. Assimilation of rainfall can produce a better short-range precipitation forecast. However, the time range of improved forecasts is limited to about 15 hours with the model resolution of 20 km. It is indicated that rainfall assimilation produces more realistic moisture divergence and temperature fields in the initial conditions for the two cases. Therefore the forecast of rainstorms is closer to observations in both quantity and pattern. Copyright 2006 by the American Geophysical Union
Estimating the characteristics of runoff inflow into Lake Gojal in ungauged, highly glacierized upper Hunza River Basin, Pakistan
Motivated by the potential flood outburst of Lake Gojal in the ungauged highly glacierized (27%) upper Hunza River Basin (HRB) in Pakistan that was dammed by a massive landslide on 4 January 2010, we attempt to analyze the characteristics of water inflow to the lake employing remote sensing data, two hydrological models, and sparsely observed data. One of the models (Model I) is a monthly degree-day model, while another (Model II) is the variable infiltration capacity (VIC) model. The mixture of glacier runoff output from Model I and runoff over unglacierized areas calculated by Model II has a similar seasonal variation pattern as that estimated from data recorded at a downstream station. This suggests that glacier runoff is the main source (87%) of runoff inflow into the lake. A sensitivity analysis suggests that the water inflow to the lake is highly sensitive to an increase in air temperature. Runoff in May is predicted to sharply increase by 15% to more than two-fold if the air temperature increases by 1 to 7, but it is predicted to increase only from 9% to 34% if the precipitation increases by 10% to 40%. The results suggested that the water inflow into Lake Gojal will not sharply rise even if there is heavy rain, and it needs to be in caution if the air temperature sharply increases. Analysis on long-term air temperature record indicates that the water inflow into the lake in May 2010 was probably less than average owing to the relatively low air temperature. Consequently, the flood outburst did not occur before the completion of the spillway on 29 May 2010. © 2013 China University of Geosciences and Springer-Verlag Berlin Heidelberg
- …